Have a personal or library account? Click to login
Characterization of Two Macrolide Resistance-Related Genes in Multidrug-Resistant Pseudomonas aeruginosa Isolates Cover

Characterization of Two Macrolide Resistance-Related Genes in Multidrug-Resistant Pseudomonas aeruginosa Isolates

Open Access
|Sep 2020

References

  1. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009 Jun 01;25(11):1422–1423. https://doi.org/10.1093/bioinformatics/btp163
  2. Ding Y, Teo JWP, Drautz-Moses DI, Schuster SC, Givskov M, Yang L. Acquisition of resistance to carbapenem and macrolide-mediated quorum sensing inhibition by Pseudomonas aeruginosa via ICETn43716385. Commun Biol. 2018 Dec;1(1):57. https://doi.org/10.1038/s42003-018-0064-0
  3. Dolejska M, Villa L, Poirel L, Nordmann P, Carattoli A. Complete sequencing of an IncHI1 plasmid encoding the carbapenemase NDM-1, the ArmA 16S RNA methylase and a resistance-nodulation-cell division/multidrug efflux pump. J Antimicrob Chemother. 2013 Jan 01;68(1):34–39. https://doi.org/10.1093/jac/dks357
  4. El Zowalaty ME, Al Thani AA, Webster TJ, El Zowalaty AE, Schweizer HP, Nasrallah GK, Marei HE, Ashour HM. Pseudomonas aeruginosa : arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol. 2015 Oct;10(10):1683–1706. https://doi.org/10.2217/fmb.15.48
  5. Ero R, Kumar V, Su W, Gao YG. Ribosome protection by ABC-F proteins – molecular mechanism and potential drug design. Protein Sci. 2019 Apr;28(4):684–693. https://doi.org/10.1002/pro.3589
  6. Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F, Cohen N, Cervin A, Douglas R, Gevaert P, et al. European position paper on rhinosinusitis and nasal polyps 2012. Rhinol Suppl. 2012 Mar;23(3):3, 1–298.
  7. Fokkens W, Lund V, Mullol J; European Position Paper on Rhinosinusitis and Nasal Polyps group. European position paper on rhinosinusitis and nasal polyps 2007. Rhinol Suppl. 2007;20:1–136.
  8. Fyfe C, Grossman TH, Kerstein K, Sutcliffe J. Resistance to macrolide antibiotics in public health pathogens. Cold Spring Harb Perspect Med. 2016 Oct;6(10):a025395. https://doi.org/10.1101/cshperspect.a025395
  9. Golkar T, Zieliński M, Berghuis AM. Look and Outlook on Enzyme-Mediated Macrolide Resistance. Front Microbiol. 2018 Aug 20;9:1942. https://doi.org/10.3389/fmicb.2018.01942
  10. Gomes C, Martínez-Puchol S, Palma N, Horna G, Ruiz-Roldán L, Pons MJ, Ruiz J. Macrolide resistance mechanisms in Enterobacteriaceae : focus on azithromycin. Crit Rev Microbiol. 2017 Jan 02;43(1):1–30. https://doi.org/10.3109/1040841X.2015.1136261
  11. González-Plaza JJ, Šimatović A, Milaković M, Bielen A, Wichmann F, Udiković-Kolić N. Functional Repertoire of Antibiotic Resistance Genes in Antibiotic Manufacturing Effluents and Receiving Freshwater Sediments. Front Microbiol. 2018 Jan 17;8:2675. https://doi.org/10.3389/fmicb.2017.02675
  12. Ho PL, Lo WU, Yeung MK, Lin CH, Chow KH, Ang I, Tong AHY, Bao JYJ, Lok S, Lo JYC. Complete sequencing of pNDM-HK encoding NDM-1 carbapenemase from a multidrug-resistant Escherichia coli strain isolated in Hong Kong. PLoS One. 2011 Mar 21;6(3): e17989. https://doi.org/10.1371/journal.pone.0017989
  13. Huang X, Deng L, Lu G, He C, Wu P, Xie Z, Aqeel Ashraf M. Research on the treatment of Pseudomonas aeruginosa pneumonia in children by macrolide antibiotics. Open Med. 2015 Jan 1;10(1): 479–482. https://doi.org/10.1515/med-2015-0082
  14. Janvier F, Otto MP, Jové T, Mille A, Contargyris C, Meaudre E, Brisou P, Plésiat P, Jeannot K. A case of multiple contamination with methylase ArmA-producing pathogens. J Antimicrob Chemother. 2017 Feb;72(2):618–620. https://doi.org/10.1093/jac/dkw418
  15. Kadlec K, Brenner Michael G, Sweeney MT, Brzuszkiewicz E, Liesegang H, Daniel R, Watts JL, Schwarz S. Molecular basis of macrolide, triamilide, and lincosamide resistance in Pasteurella multocida from bovine respiratory disease. Antimicrob Agents Chemother. 2011 May;55(5):2475–2477. https://doi.org/10.1128/AAC.00092-11
  16. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013 Apr 01;30(4):772–780. https://doi.org/10.1093/molbev/mst010
  17. Kobayashi H. Biofilm disease: its clinical manifestation and therapeutic possibilities of macrolides. Am J Med. 1995 Dec;99(6) 6A: 26s–30s. https://doi.org/10.1016/S0002-9343(99)80282-4
  18. Li XZ, Barré N, Poole K. Influence of the MexA-MexB-OprM multidrug efflux system on expression of the MexC-MexD-OprJ and MexE-MexF-OprN multidrug efflux systems in Pseudomonas aeruginosa. J Antimicrob Chemother. 2000 Dec 1;46(6):885–893. https://doi.org/10.1093/jac/46.6.885
  19. Li Y, Mima T, Komori Y, Morita Y, Kuroda T, Mizushima T, Tsuchiya T. A new member of the tripartite multidrug efflux pumps, MexVW-OprM, in Pseudomonas aeruginosa. J Antimicrob Chemother. 2003 Sep 01;52(4):572–575. https://doi.org/10.1093/jac/dkg390
  20. Madhusudhan KT, McLaughlin R, Komori N, Matsumoto H. Identification of a major protein upon phosphate starvation of Pseudomonas aeruginosa PAO1. J Basic Microbiol. 2003 Mar;43(1):36–46. https://doi.org/10.1002/jobm.200390002
  21. Mitsuya Y, Kawai S, Kobayashi H. Influence of macrolides on guanosine diphospho-d-mannose dehydrogenase activity in Pseudomonas biofilm. J Infect Chemother. 2000;6(1):45–50. https://doi.org/10.1007/s101560050049
  22. Miyoshi-Akiyama T, Tada T, Ohmagari N, Viet Hung N, Tharavichitkul P, Pokhrel BM, Gniadkowski M, Shimojima M, Kirikae T. Emergence and spread of epidemic multidrug-resistant Pseudomonas aeruginosa. Genome Biol Evol. 2017 Dec 01;9(12):3238–3245. https://doi.org/10.1093/gbe/evx243
  23. Mustafa MH, Khandekar S, Tunney MM, Elborn JS, Kahl BC, Denis O, Plésiat P, Traore H, Tulkens PM, Vanderbist F, et al. Acquired resistance to macrolides in Pseudomonas aeruginosa from cystic fibrosis patients. Eur Respir J. 2017 May;49(5):1601847. https://doi.org/10.1183/13993003.01847-2016
  24. Ning FG, Zhao XZ, Bian J, Zhang GA. Large-area burns with pandrug-resistant Pseudomonas aeruginosa infection and respiratory failure. Chin Med J (Engl). 2011 Feb;124(3):359–363.
  25. Paterson DL. The epidemiological profile of infections with multidrug-resistant Pseudomonas aeruginosa and Acinetobacter species. Clin Infect Dis. 2006 Sep 01;43 Supplement_2:S43–S48. https://doi.org/10.1086/504476
  26. Pereyre S, Goret J, Bébéar C. Mycoplasma pneumoniae: Current knowledge on macrolide resistance and treatment. Front Microbiol. 2016 Jun 22;7:974. https://doi.org/10.3389/fmicb.2016.00974
  27. Poehlsgaard J, Douthwaite S. The bacterial ribosome as a target for antibiotics. Nat Rev Microbiol. 2005 Nov;3(11):870–881. https://doi.org/10.1038/nrmicro1265
  28. Roberts MC, Sutcliffe J, Courvalin P, Jensen LB, Rood J, Seppala H. Nomenclature for macrolide and macrolide-lincosamidestreptogramin B resistance determinants. Antimicrob Agents Chemother. 1999 Dec 01;43(12):2823–2830. https://doi.org/10.1128/AAC.43.12.2823
  29. Roberts MC. Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol Lett. 2008 May;282(2):147–159. https://doi.org/10.1111/j.1574-6968.2008.01145.x
  30. Schlüter A, Szczepanowski R, Kurz N, Schneiker S, Krahn I, Pühler A. Erythromycin resistance-conferring plasmid pRSB105, isolated from a sewage treatment plant, harbors a new macrolide resistance determinant, an integron-containing Tn402-like element, and a large region of unknown function. Appl Environ Microbiol. 2007 Mar 15;73(6):1952–1960. https://doi.org/10.1128/AEM.02159-06
  31. Strateva T, Yordanov D. Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J Med Microbiol. 2009 Sep 01;58(9): 1133–1148. https://doi.org/10.1099/jmm.0.009142-0
  32. Tripathy S, Kumar N, Mohanty S, Samanta M, Mandal RN, Maiti NK. Characterisation of Pseudomonas aeruginosa isolated from freshwater culture systems. Microbiol Res. 2007 Sep;162(4):391–396. https://doi.org/10.1016/j.micres.2006.08.005
  33. Tu D, Blaha G, Moore PB, Steitz TA. Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell. 2005 Apr;121(2):257–270. https://doi.org/10.1016/j.cell.2005.02.005
  34. van Hoek AHAM, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJM. Acquired antibiotic resistance genes: an overview. Front Microbiol. 2011;2:203. https://doi.org/10.3389/fmicb.2011.00203
  35. Vester B, Douthwaite S. Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob Agents Chemother. 2001 Jan 01;45(1):1–12. https://doi.org/10.1128/AAC.45.1.1-12.2001
  36. Wang R, Liu H, Zhao X, Li J, Wan K. IncA/C plasmids conferring high azithromycin resistance in vibrio cholerae. Int J Antimicrob Agents. 2018 Jan;51(1):140–144. https://doi.org/10.1016/j.ijantimicag.2017.09.009
  37. Wekselman I, Zimmerman E, Davidovich C, Belousoff M, Matzov D, Krupkin M, Rozenberg H, Bashan A, Friedlander G, Kjeldgaard J, et al. The ribosomal protein uL22 modulates the shape of the protein exit tunnel. Structure. 2017 Aug;25(8):1233–1241.e3. https://doi.org/10.1016/j.str.2017.06.004
  38. Wu C, Lin C, Zhu X, Liu H, Zhou W, Lu J, Zhu L, Bao Q, Cheng C, Hu Y. The β-lactamase gene profile and a plasmid-carrying multiple heavy metal resistance genes of Enterobacter cloacae. Int J Genomics. 2018 Dec 20;2018:1–12. https://doi.org/10.1155/2018/4989602
  39. Zhanel GG, Dueck M, Hoban DJ, Vercaigne LM, Embil JM, Gin AS, Karlowsky JA. Review of macrolides and ketolides: focus on respiratory tract infections. Drugs. 2001;61(4):443–498. https://doi.org/10.2165/00003495-200161040-00003
  40. Zhao J, Mu X, Zhu Y, Xi L, Xiao Z. Identification of an integron containing the quinolone resistance gene qnrA1 in Shewanella xiamenensis. FEMS Microbiol Lett. 2015 Sep;362(18):fnv146. https://doi.org/10.1093/femsle/fnv146
  41. Zhu XQ, Wang XM, Li H, Shang YH, Pan YS, Wu CM, Wang Y, Du XD, Shen JZ. Novel lnu(G) gene conferring resistance to lincomycin by nucleotidylation, located on Tn6260 from Enterococcus faecalis E531. J Antimicrob Chemother. 2017 Apr 1;72(4):993–997.
DOI: https://doi.org/10.33073/pjm-2020-038 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 349 - 356
Submitted on: May 14, 2020
Accepted on: Aug 15, 2020
Published on: Sep 8, 2020
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 QING CHEN, WEI LU, DANYING ZHOU, GUOTONG ZHENG, HONGMAO LIU, CHANGRUI QIAN, WANGXIAO ZHOU, JUNWAN LU, LIYAN NI, QIYU BAO, AIFANG LI, TENG XU, HAILI XU, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.