References
- Barros F, Dykes L, Awika JM, Rooney LW. Accelerated solvent extraction of phenolic compounds from sorghum brans. J Cereal Sci. 2013 Sep;58(2):305–312. https://doi.org/10.1016/j.jcs.2013.05.011
- Bharagava RN, Mani S, Mulla SI, Saratale GD. Degradation and decolourization potential of an ligninolytic enzyme producing Aeromonas hydrophila for crystal violet dye and its phytotoxicity evaluation. Ecotoxicol Environ Saf. 2018 Jul;156:166–175. https://doi.org/10.1016/j.ecoenv.2018.03.012
- Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R. Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep. 2011b;28(12):1883–1896. https://doi.org/10.1039/c1np00042j
- Bugg TDH, Ahmad M, Hardiman EM, Singh R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol. 2011a Jun;22(3):394–400. https://doi.org/10.1016/j.copbio.2010.10.009
- Carlos C, Fan H, Currie CR. Substrate shift reveals roles for members of bacterial consortia in degradation of plant cell wall polymers. Front Microbiol. 2018 Mar 1;9:364. https://doi.org/10.3389/fmicb.2018.00364
- Chai L, Chen Y, Tang C, Yang Z, Zheng Y, Shi Y. Depolymerization and decolorization of kraft lignin by bacterium Comamonas sp. B-9. Appl Microbiol Biotechnol. 2014 Feb;98(4):1907–1912. https://doi.org/10.1007/s00253-013-5166-5
- Chen BY, Chen WM, Yang CC, Li WD, Kuo HY. Characterization of Aeromonas hydrophila and Acinetobacter strains isolated from Northeast Taiwan for degradation of aromatic compounds. J Biotechnol. 2008 Oct;136:S700. https://doi.org/10.1016/j.jbiotec.2008.07.1624
- Chen Y, Li C, Zhou Z, Wen J, You X, Mao Y, Lu C, Huo G, Jia X. Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis. Appl Biochem Biotechnol. 2014 Apr;172(7):3433–3447. https://doi.org/10.1007/s12010-014-0777-6
- Chen YH, Chai LY, Zhu YH, Yang ZH, Zheng Y, Zhang H. Biodegradation of kraft lignin by a bacterial strain Comamonas sp. B-9 isolated from eroded bamboo slips. J Appl Microbiol. 2012 May;112(5): 900–906. https://doi.org/10.1111/j.1365-2672.2012.05275.x
- Cragg SM, Beckham GT, Bruce NC, Bugg TDH, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, et al. Lignocellulose degradation mechanisms across the Tree of Life. Curr Opin Chem Biol. 2015 Dec;29:108–119. https://doi.org/10.1016/j.cbpa.2015.10.018
- Eaton RW, Ribbons DW. Metabolism of dibutylphthalate and phthalate by Micrococcus sp. strain 12B. J Bacteriol. 1982;151(1): 48–57. https://doi.org/10.1128/JB.151.1.48-57.1982
- Grant DJW. The degradative versatility, arylesterase activity and hydroxylation reactions of Acinetobacter lwoffi NCIB 10553. J Appl Bacteriol. 1973 Mar;36(1):47–59. https://doi.org/10.1111/j.1365-2672.1973.tb04072.x
- Hatfield RD, Rancour DM, Marita JM. Grass cell walls: A story of cross-linking. Front Plant Sci. 2017 Jan 18;7:2056. https://doi.org/10.3389/fpls.2016.02056
- Hwang S, Lee CH, Ahn IS. Product identification of guaiacol oxidation catalyzed by manganese peroxidase. J Ind Eng Chem. 2008 Jul;14(4):487–492. https://doi.org/10.1016/j.jiec.2008.02.008
- Iyer AP, Mahadevan A. Lignin degradation by bacteria. Prog Ind Microbiol. 2002;36:311–330. https://doi.org/10.1016/S0079-6352(02)80017-0
- Jiang Y, Qi H, Zhang X, Chen G. Inorganic impurity removal from waste oil and wash-down water by Acinetobacter johnsonii. J Hazard Mater. 2012 Nov;239–240:289–293. https://doi.org/10.1016/j.jhazmat.2012.08.076
- Jiang Y, Qi H, Zhang XM. Co-biodegradation of naphthalene and phenanthrene by Acinetobacter johnsonii. Polycycl Aromat Compd. 2020 Mar 14;40(2):422–431. https://doi.org/10.1080/10406638.2018.1441881
- Kang X, Kirui A, Dickwella Widanage MC, Mentink-Vigier F, Cosgrove DJ, Wang T. Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nat Commun. 2019 Dec;10(1):347. https://doi.org/10.1038/s41467-018-08252-0
- Kim SI, Ha KS, Leem SH. Differential organization and transcription of the cat2 gene cluster in aniline-assimilating Acinetobacter lwoffii K24. J Biosci Bioeng. 1999 Jan;88(3):250–257. https://doi.org/10.1016/S1389-1723(00)80005-5
- Lee SY, Kim GH, Yun SH, Choi CW, Yi YS, Kim J, Chung YH, Park EC, Kim SI. Proteogenomic characterization of monocyclic aromatic hydrocarbon degradation pathways in the aniline-degrading bacterium Burkholderia sp. K24. PLoS One. 2016 Apr 28;11(4):e0154233. https://doi.org/10.1371/journal.pone.0154233
- Lee SY, Yun SH, Choi CW, Lee DG, Choi JS, Kahng HY, Kim SI. Draft genome sequence of an aniline-degrading bacterium, Burkholderia sp. K24. Genome Announc. 2014 Dec 04;2(6):e01250–14. https://doi.org/10.1128/genomeA.01250-14
- Masai E, Katayama Y, Fukuda M. Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem. 2007 Jan 23;71(1):1–15. https://doi.org/10.1271/bbb.60437
- Min K, Gong G, Woo HM, Kim Y, Um Y. A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and β-ether lignin dimer. Sci Rep. 2015 Jul;5(1):8245. https://doi.org/10.1038/srep08245
- Nishimura H, Kamiya A, Nagata T, Katahira M, Watanabe T. Direct evidence for α ether linkage between lignin and carbohydrates in wood cell walls. Sci Rep. 2018 Dec;8(1):6538. https://doi.org/10.1038/s41598-018-24328-9
- Ogawa G, Ishida M, Urano N. Isolation and identification of dibutyl phthalate-degrading bacteria from hydrospheres in Tokyo. J Gen Appl Microbiol. 2009;55(4):261–265. https://doi.org/10.2323/jgam.55.261
- Paz A, Carballo J, Pérez MJ, Diéguez SC, Domínguez JM. Microbial decoloration of dyes by Bacillus aryabhattai. N Biotechnol. 2016b May;33(3):421. https://doi.org/10.1016/j.nbt.2015.10.020
- Paz A, Carballo J, Pérez MJ, Domínguez JM. Bacillus aryabhattai BA03: a novel approach to the production of natural value-added compounds. World J Microbiol Biotechnol. 2016a Oct;32(10):159. https://doi.org/10.1007/s11274-016-2113-5
- Paz A, Outeiriño D, Domínguez JM. Fed-batch production of vanillin by Bacillus aryabhattai BA03. N Biotechnol. 2018 Jan 25;40 (Pt B):186–191. https://doi.org/10.1016/j.nbt.2017.07.012
- Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, et al. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014 May 16;344(6185):1246843. https://doi.org/10.1126/science.1246843
- Shivaji S, Chaturvedi P, Begum Z, Pindi PK, Manorama R, Padmanaban DA, Shouche YS, Pawar S, Vaishampayan P, Dutt CBS, et al. Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere. Int J Syst Evol Microbiol. 2009 Dec 01;59(12):2977–2986. https://doi.org/10.1099/ijs.0.002527-0
- Sonoki T, Masai E, Sato K, Kajita S, Katayama Y. Methoxyl groups of lignin are essential carbon donors in C1 metabolism of Sphingobium sp. SYK-6. J Basic Microbiol. 2009 Sep;49(S1) Suppl 1:S98–S102. https://doi.org/10.1002/jobm.200800367
- Sonoki T, Otsuka Y, Ikeda S, Masai E, Kajita S, Katayama Y. Close association between the enzymes involved in the lignin metabolic pathway of Sphingomonas paucimobilis SYK-6: interaction of O-demethylase (LigX) and ring fission dioxygenase (LigZ). J Wood Sci. 2002;48:250–252. https://doi.org/10.1007/BF00771377
- Vandana T. Scouting of enzymes involved in the degradation of cellulosic material from native organism. Mysuru (India): CSIR – Central Food Technological Research Institute; 2009.
- Xu G, Li F, Wang Q. Occurrence and degradation characteristics of dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) in typical agricultural soils of China. Sci Total Environ. 2008 Apr; 393(2–3):333–340. https://doi.org/10.1016/j.scitotenv.2008.01.001
- Xu R, Zhang K, Liu P, Han H, Zhao S, Kakade A, Khan A, Du D, Li X. Lignin depolymerization and utilization by bacteria. Bioresour Technol. 2018 Dec;269:557–566. https://doi.org/10.1016/j.biortech.2018.08.118
- Yang CX, Wang T, Gao LN, Yin HJ, Lü X. Isolation, identification and characterization of lignin-degrading bacteria from Qinling, China. J Appl Microbiol. 2017 Dec;123(6):1447–1460. https://doi.org/10.1111/jam.13562
- Yi X, Xiang O, Rong J, Zhu Y, Qingfang X. Research progress in application of Bacillus aryabhattai. Biotechnol. 2018;28(3):302–306.
- Yu XQ, Belhaj A, Elmerich C, Lin M. Diversity of degradation pathways of some aromatic compounds by phenotype and genotype testing in Acinetobacter strains. World J Microbiol Biotechnol. 2004;20(6):623–627. https://doi.org/10.1023/B:WIBI.0000043184.30420.20
- Zainith S, Purchase D, Saratale GD, Ferreira LFR, Bilal M, Bharagava RN. Isolation and characterization of lignin-degrading bacterium Bacillus aryabhattai from pulp and paper mill wastewater and evaluation of its lignin-degrading potential. 3 Biotech. 2019;9(3):92.
- Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM. The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev. 2010 Jun 09;110(6):3552–3599. https://doi.org/10.1021/cr900354u
- Zhou H, Guo W, Xu B, Teng Z, Tao D, Lou Y, Gao Y. Screening and identification of lignin-degrading bacteria in termite gut and the construction of LiP-expressing recombinant Lactococcus lactis. Microb Pathog. 2017;112:63–69.
- Zhu G, Lin M, Di F, Ning W, Ouyang X, Yong Q, Qiu X. Effect of benzyl functionality on microwave-assisted cleavage of Cα-Cβ bonds in lignin model compounds. J Phys Chem C. 2017;121(3):1537–1545. https://doi.org/10.1021/acs.jpcc.6b12056