Have a personal or library account? Click to login
Direct Fermentative Hydrogen Production from Cellulose and Starch with Mesophilic Bacterial Consortia Cover

Direct Fermentative Hydrogen Production from Cellulose and Starch with Mesophilic Bacterial Consortia

Open Access
|Mar 2020

References

  1. Abdullah JJ, Greetham D, Pensupa N, Tucker GA, Du C. Optimizing cellulase production from Municipal Solid Waste (MSW) using Solid State Fermentation (SSF). J Fundam Renew Energy Appl. 2016;6(3). https://doi.org/10.4172/2090-4541.1000206
  2. Baffert C, Kpebe A, Avilan L, Brugna M. Chapter Three – Hydrogenases and H2 metabolism in sulfate-reducing bacteria of the Desulfovibrio genus. In: Poole RK, editor. Advances in Microbial Physiology. Vol. 74. Cambridge (USA): Academic Press; 2019. p. 143–189.
  3. Baghchehsaraee B, Nakhla G, Karamanev D, Margaritis A, Reid G. The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures. Int J Hydrogen Energy. 2008 Aug;33(15):4064–4073. https://doi.org/10.1016/j.ijhydene.2008.05.069
  4. Bao H, Chen C, Jiang L, Liu Y, Shen M, Liu W, Wang A. Optimization of key factors affecting biohydrogen production from microcrystalline cellulose by the co-culture of Clostridium acetobutylicum X9 + Ethanoigenens harbinense B2. RSC Advances. 2016; 6(5):3421–3427. https://doi.org/10.1039/C5RA14192C
  5. Bernardez LA, de Andrade Lima LRP. Improved method for enumerating sulfate-reducing bacteria using optical density. MethodsX. 2015;2 Supplement C:249–255. https://doi.org/10.1016/j.mex.2015.04.006
  6. Bundhoo MAZ, Mohee R, Hassan MA. Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review. J Environ Manage. 2015 Jul;157:20–48. https://doi.org/10.1016/j.jenvman.2015.04.006
  7. Cai J, Wang G. Comparison of different pre-treatment methods for enriching hydrogen-producing bacteria from intertidal sludge. Int J Green Energy. 2016 Feb 19;13(3):292–297. https://doi.org/10.1080/15435075.2014.893436
  8. Carver SM, Nelson MC, Lepistö R, Yu Z, Tuovinen OH. Hydrogen and volatile fatty acid production during fermentation of cellulosic substrates by a thermophilic consortium at 50 and 60°C. Bioresour Technol. 2012 Jan;104:424–431. https://doi.org/10.1016/j.biortech.2011.11.013
  9. Deng C, Lin R, Cheng J, Murphy JD. Can acid pre-treatment enhance biohydrogen and biomethane production from grass silage in single-stage and two-stage fermentation processes? Energy Convers Manag. 2019 Sep;195:738–747. https://doi.org/10.1016/j.enconman.2019.05.044
  10. Dinesh GK, Chauhan R, Chakma S. Influence and strategies for enhanced biohydrogen production from food waste. Renew Sustain Energy Rev. 2018 Sep;92:807–822. https://doi.org/10.1016/j.rser.2018.05.009
  11. Gadow SI, Li YY, Liu Y. Effect of temperature on continuous hydrogen production of cellulose. Int J Hydrogen Energy. 2012 Oct; 37(20):15465–15472. https://doi.org/10.1016/j.ijhydene.2012.04.128
  12. Gomez-Flores M, Nakhla G, Hafez H. Hydrogen production and microbial kinetics of Clostridium termitidis in mono-culture and co-culture with Clostridium beijerinckii on cellulose. AMB Express. 2017 Dec;7(1):84. https://doi.org/10.1186/s13568-016-0256-2
  13. Gupta M, Velayutham P, Elbeshbishy E, Hafez H, Khafipour E, Derakhshani H, El Naggar MH, Levin DB, Nakhla G. Co-fermentation of glucose, starch, and cellulose for mesophilic biohydrogen production. Int J Hydrogen Energy. 2014 Dec;39(36):20958–20967. https://doi.org/10.1016/j.ijhydene.2014.10.079
  14. Ho KL, Lee DJ, Su A, Chang JS. Biohydrogen from lignocellulosic feedstock via one-step process. Int J Hydrogen Energy. 2012 Oct;37 (20):15569–15574. https://doi.org/10.1016/j.ijhydene.2012.01.137
  15. Jiang H, Gadow SI, Tanaka Y, Cheng J, Li YY. Improved cellulose conversion to bio-hydrogen with thermophilic bacteria and characterization of microbial community in continuous bioreactor. Biomass Bioenergy. 2015 Apr;75:57–64. https://doi.org/10.1016/j.biombioe.2015.02.010
  16. Kumar G, Bakonyi P, Periyasamy S, Kim SH, Nemestóthy N, Bélafi-Bakó K. Lignocellulose biohydrogen: practical challenges and recent progress. Renew Sustain Energy Rev. 2015 Apr;44 Supplement C:728–737. https://doi.org/10.1016/j.rser.2015.01.042
  17. Lin C, Chang C, Hung C. Fermentative hydrogen production from starch using natural mixed cultures. Int J Hydrogen Energy. 2008 May;33(10):2445–2453. https://doi.org/10.1016/j.ijhydene.2008.02.069
  18. Lo YC, Huang CY, Fu TN, Chen CY, Chang JS. Fermentative hydrogen production from hydrolyzed cellulosic feedstock prepared with a thermophilic anaerobic bacterial isolate. Int J Hydrogen Energy. 2009 Aug;34(15):6189–6200. https://doi.org/10.1016/j.ijhydene.2009.05.104
  19. Łukajtis R, Hołowacz I, Kucharska K, Glinka M, Rybarczyk P, Przyjazny A, Kamiński M. Hydrogen production from biomass using dark fermentation. Renew Sustain Energy Rev. 2018 Aug;91: 665–694. https://doi.org/10.1016/j.rser.2018.04.043
  20. Mockaitis G, Bruant G, Guiot SR, Peixoto G, Foresti E, Zaiat M. Acidic and thermal pre-treatments for anaerobic digestion inoculum to improve hydrogen and volatile fatty acid production using xylose as the substrate. Renew Energy. 2020 Jan;145:1388–1398. https://doi.org/10.1016/j.renene.2019.06.134
  21. Mohammed A, Abdul-Wahab MF, Hashim M, Omar AH, Md Reba MN, Muhamad Said MF, Soeed K, Alias SA, Smykla J, Abba M, et al. Biohydrogen production by antarctic psychrotolerant Klebsiella sp. ABZ11. Pol J Microbiol. 2018;67(3):283–290. https://doi.org/10.21307/pjm-2018-033
  22. Nagarajan D, Lee DJ, Chang JS. Recent insights into consolidated bioprocessing for lignocellulosic biohydrogen production. Int J Hydrogen Energy. 2019 May;44(28):14362–14379. https://doi.org/10.1016/j.ijhydene.2019.03.066
  23. Plugge CM, Zhang W, Scholten JCM, Stams AJM. Metabolic flexibility of sulfate-reducing bacteria. Front Microbiol. 2011;2:81. https://doi.org/10.3389/fmicb.2011.00081
  24. Ravindran A, Adav S, Yang SS. Effect of heat pre-treatment temperature on isolation of hydrogen producing functional consortium from soil. Renew Energy. 2010 Dec;35(12):2649–2655. https://doi.org/10.1016/j.renene.2010.04.010
  25. Ren NQ, Xu JF, Gao LF, Xin L, Qiu J, Su DX. Fermentative biohydrogen production from cellulose by cow dung compost enriched cultures. Int J Hydrogen Energy. 2010 Apr;35(7):2742–2746. https://doi.org/10.1016/j.ijhydene.2009.04.057
  26. Saady NMC. Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge. Int J Hydrogen Energy. 2013 Oct;38(30):13172–13191. https://doi.org/10.1016/j.ijhydene.2013.07.122
  27. Saripan AF, Reungsang A. Thermophilic fermentative biohydrogen production from xylan by anaerobic mixed cultures in elephant dung. Int J Green Energy. 2015 Sep 02;12(9):900–907. https://doi.org/10.1080/15435075.2014.887567
  28. Sgobbi A, Nijs W, De Miglio R, Chiodi A, Gargiulo M, Thiel C. How far away is hydrogen? Its role in the medium and long-term decarbonisation of the European energy system. Int J Hydrogen Energy. 2016 Jan;41(1):19–35. https://doi.org/10.1016/j.ijhydene.2015.09.004
  29. Shanmugam SR, Lalman JA, Chaganti SR, Heath DD, Lau PCK, Shewa WA. Long term impact of stressing agents on fermentative hydrogen production: effect on the hydrogenase flux and population diversity. Renew Energy. 2016 Apr;88:483–493. https://doi.org/10.1016/j.renene.2015.11.062
  30. Trchounian K, Sawers RG, Trchounian A. Improving biohydrogen productivity by microbial dark- and photo-fermentations: novel data and future approaches. Renew Sustain Energy Rev. 2017 Dec; 80:1201–1216. https://doi.org/10.1016/j.rser.2017.05.149
  31. Wang J, Yin Y. Fermentative hydrogen production using various biomass-based materials as feedstock. Renew Sustain Energy Rev. 2018 Sep;92:284–306. https://doi.org/10.1016/j.rser.2018.04.033
  32. Wang J, Yin Y. Principle and application of different pretreatment methods for enriching hydrogen-producing bacteria from mixed cultures. Int J Hydrogen Energy. 2017 Feb;42(8):4804–4823. https://doi.org/10.1016/j.ijhydene.2017.01.135
  33. Wang YY, Ai P, Hu CX, Zhang YL. Effects of various pretreatment methods of anaerobic mixed microflora on biohydrogen production and the fermentation pathway of glucose. Int J Hydrogen Energy. 2011 Jan;36(1):390–396. https://doi.org/10.1016/j.ijhydene.2010.09.092
  34. Yang G, Wang J, Shen Y. Antibiotic fermentation residue for biohydrogen production using different pretreated cultures: performance evaluation and microbial community analysis. Bioresour Technol. 2019 Nov;292:122012. https://doi.org/10.1016/j.biortech.2019.122012
  35. Zagrodnik R, Łaniecki M. The effect of pH on cooperation between dark- and photo-fermentative bacteria in a co-culture process for hydrogen production from starch. Int J Hydrogen Energy. 2017 Feb;42(5):2878–2888. https://doi.org/10.1016/j.ijhydene.2016.12.150
  36. Zhang JN, Li YH, Zheng HQ, Fan YT, Hou HW. Direct degradation of cellulosic biomass to bio-hydrogen from a newly isolated strain Clostridium sartagoforme FZ11. Bioresour Technol. 2015 Sep;192:60–67. https://doi.org/10.1016/j.biortech.2015.05.034
  37. Zhang L, Li Y, Liu X, Ren N, Ding J. Lignocellulosic hydrogen production using dark fermentation by Clostridium lentocellum strain Cel10 newly isolated from Ailuropoda melanoleuca excrement. RSC Advances. 2019 Apr 09;9(20):11179–11185. https://doi.org/10.1039/C9RA01158G
DOI: https://doi.org/10.33073/pjm-2020-015 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 109 - 120
Submitted on: Dec 5, 2019
Accepted on: Feb 17, 2020
Published on: Mar 11, 2020
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 ROMAN ZAGRODNIK, KRYSTYNA SEIFERT, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.