Have a personal or library account? Click to login
Life history of wahoo, Acanthocybium solandri, in the Tropical Eastern Atlantic Ocean – the importance of applying a suite of methods for fisheries assessment in data-limited situations Cover

Life history of wahoo, Acanthocybium solandri, in the Tropical Eastern Atlantic Ocean – the importance of applying a suite of methods for fisheries assessment in data-limited situations

Open Access
|Mar 2022

References

  1. Abobi, S. M., Mildenberger, T. K., Kolding, J., & Wolff, M. (2019). Assessing the exploitation status of main fisheries resources in Ghana’s reservoirs based on reconstructed catches and a length-based bootstrapping stock assessment method. Lake and Reservoir Management, 35(4), 415–434. Advance online publication. https://doi.org/10.1080/10402381.2019.1616340
  2. Allain, V. 2003. Diet of mahi-mahi, wahoo and lancetfish in the western and central Pacific. In: 16th Meeting of the Standing Committee on Tuna and Billfish Working Paper, Secretariat of the Pacific Community, Noumea, p. 19.
  3. Alverson, D. L., & Carney, M. J. 1975. A graphic review of the growth and decay of population cohorts. ICES Journal of Marine Science. 36(2), 133–143. https://doi.org/10.1093/icesjms/36.2.133
  4. Beverton, R. J. H., & Holt, S. J. (1956). A review of the methods for estimating mortality rates in fish populations, with special reference to sources of bias in catch sampling. Rapports et Procès Verbaux des Réunions - Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 140, 67–83.
  5. Beverton, R. J. H., & Holt, S. J. (1957). On the dynamics of exploited fish populations. Ministry of Agriculture.
  6. Bjornda, L. K. A., Bolten, A. B., Coan, A. L., & Kleiber, P. (1995). Estimation of green turtle (Chelonia mydas) growth rates from length-frequency analysis. Copeia, 1995(1), 71–77. https://doi.org/10.2307/1446800
  7. Brodziak, J., Ianelli, J., Lorenzen, K., & Methot, R. D., Jr. 2011. Estimating natural mortality in stock assessment applications. Department Commerce, NOAA, Tech Memo, NMFS-F/SPO-199, NMFS-F/SPO-199pg. (Washington: NOAA), 38.
  8. Brown-Peterson, N. J., Franks, J. S., & Burke, A. M. (2000). Preliminary observations on the reproductive biology of wahoo, Acanthocybium solandri, from the northern Gulf of Mexico and Bimini, Bahamas. Proceedings of the Gulf and Caribbean Fisheries Institute, 51, 414–427.
  9. Brown-Peterson, N. J., Wyanski, D. M., Saborido-Rey, F., Macewicz, B. J., & Lowerre-Barbieri, S. K. (2011). A Standardized Terminology for Describing Reproductive Development in Fishes. Marine and Coastal Fisheries, 3(1), 52–70. https://doi.org/10.1080/19425120.2011.555724
  10. Campana, S. E. (2001). Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology, 59(2), 197–242. https://doi.org/10.1111/j.1095-8649.2001.tb00127.x
  11. Carbonara, P., Intini, S., Kolitari, J., Joksimović, A., Milone, N., Lembo, G., Casciaro, L., Bitetto, I., Zupa, W., Spedicato, M. T., & Sion, L. (2018). A holistic approach to the age validation of Mullus barbatus L., 1758 in the Southern Adriatic Sea (Central Mediterranean). Scientific Reports, 8, 13219. https://doi.org/10.1038/s41598-018-30872-1 PMID:30185811
  12. Chen, S., & Watanabe, S. (1989). Age Dependence of Natural Mortality Coefficient in Fish Population Dynamics. Nippon Suisan Gakkaishi, 55(2), 205–208. https://doi.org/10.2331/suisan.55.205
  13. Collette, B. B., & Nauen, C. E. 1983. FAO Species Catalogue Vol. 2 Scombrids of the world. FAO Fisheries Synopsis, 125, Rome. 137 pp.
  14. Costello, C., Ovando, D., Hilborn, R., Gaines, S. D., Deschenes, O., & Lester, S. E. (2012). Status and solutions for the world’s unassessed fisheries. Science, 338(6106), 517–520. https://doi.org/10.1126/science.1223389 PMID:23019613
  15. Figuerola-Fernandez, M., Pena-Alvarado, N., & Torres-Ruiz, W. (2008). 2008. Maturation and reproductive seasonality of the wahoo (Acanthocybium solandri), red-ear sardine (Harengula humeralis), false pilchard (Harengula clupeola), thread herring (Opisthonema oglinum), crevalle jack (Caranx hippos), horse-eye jack (Caranx latus), blue runner (Caranx crysos), and great barracuda (Sphyraena barracuda) in Puerto Rico. In J. Velez-Arocho, E. Diaz-Velazquez, M. Garcia-Perez, J. M. Berrios, & A. Rosario-Jimenez (Eds.), Aspects of the reproductive biology of recreationally important fish species in Puerto Rico. Department of Natural and Environmental Resources, Fish and Wildlife Bureau.
  16. Froese, R., Demirel, N., Coro, G., Kleisner, K. M., & Winker, H. (2017). Estimating fisheries reference points from catch and resilience. Fish and Fisheries, 18(3), 506–526. https://doi.org/10.1111/faf.12190
  17. Froese, R., Winker, H., Coro, G., Demirel, N., Tsikliras, A. C., Dimarchopoulou, D., Scarcella, G., Probst, W. N., Dureuil, M., & Pauly, D. (2018). A new approach for estimating stock status from length frequency data. ICES Journal of Marine Science, 75(6), 2004–2015. https://doi.org/10.1093/icesjms/fsy078
  18. Gao, C., Tian, S., Kindong, R., & Dai, X. (2020). Biology and Environmental Preferences of Wahoo, Acanthocybium solandri (Cuvier, 1832), in the Western and Central Pacific Ocean (WCPO). Journal of Marine Science and Engineering, 8(3), 184. https://doi.org/10.3390/jmse8030184
  19. Gayanilo, F. C., & Pauly, D. (Eds.). (1997). “FAO-ICLARM Stock Assessment Tools: Reference Manual,” in FAO Computerized Information Series (Fisheries) 8. Food and Agriculture Organization of the United Nations.
  20. Gayanilo, F. C., Sparre, P., & Pauly, D. (2005). FAO-ICLARM stock assessment tools II: User’s guide. Food & Agriculture Organization.
  21. Gislason, H., Daan, N., Rice, J. C., & Pope, J. G. (2010). Size, growth, temperature and the natural mortality of marine fish. Fish and Fisheries, 11(2), 149–158. https://doi.org/10.1111/j.1467-2979.2009.00350.x
  22. González-Gómeza, R., Meiners-Mandujanob, C., Morillo-Velardeb, P. S., Jiménez-Badillob, L., & Markaida, U. (2020). Reproductive dynamics and population structure of octopus insularis from the veracruz reef system marine protected area, Mexico. Fisheries Research, 221, 105385. https://doi.org/10.1016/j.fishres.2019.105385
  23. Gulland, J.A. 1971. The fish resources of the ocean. West Byfleet (UK): Fishing News (Books) Ltd
  24. Herrón, P., Mildenberger, T. K., Diaz, J. M., & Wolff, M. (2018). Assessment of the stock status of small-scale and multi-gear fisheries resources in the tropical Eastern Pacific region. Regional Studies in Marine Science, 24, 311–323. Advance online publication. https://doi.org/10.1016/j.rsma.2018.09.008
  25. Hogarth, W. T. 1976. Life-history aspects of the wahoo Acanthocybium solandri (Cuvier and Valenciennes) from the coast of North Carolina. PhD Dissertation. North Carolina State University, Raleigh, NC, USA.
  26. Haddon, M. (2011). Modelling and Quantitative Methods in Fisheries (2nd ed.). CRC Press. https://doi.org/10.1201/9781439894170
  27. Hewitt, D. A., & Hoenig, J. M. (2005). Comparison of two approaches for estimating natural mortality based on longevity. Fish Bulletin, 103, 433–437.
  28. Hoenig, J. M. (1983). Empirical Use of Longevity Data to Estimate Mortality Rates. Fish Bulletin, 82, 898–903.
  29. Hilborn, R., & Walters, C. J. (1992). Quantitative fisheries stock assessment: choice, dynamics and uncertainty. Chapman and Hall. https://doi.org/10.1007/978-1-4615-3598-0
  30. Hordyk, A., Ono, K., Valencia, S., Loneragan, N., & Prince, J. (2015). A novel length-based empirical estimation method of spawning potential ratio (SPR), and tests of its performance, for small-scale, data-poor fisheries. ICES Journal of Marine Science, 72(1), 217–231. https://doi.org/10.1093/icesjms/fsu004
  31. ICCAT (INTERNATIONAL COMMISSION for the CONSERVATION of ATLANTIC TUNAS). (2019). Report for Biennial Period, 2018–19, Part I, Vol. 2, 194, 252, 351pp. Iversen, E.S., & Yoshida, H.O.1957. Notes on the biology of the wahoo in the Line Islands. Pacific Science, 11, 370–379.
  32. Jenkins, K. L. M., & McBride, R. S. (2009). Reproductive biology of wahoo, Acanthocybium solandri, from the Atlantic coast of Florida and the Bahamas. Marine and Freshwater Research, 60(9), 893–897. https://doi.org/10.1071/MF08211
  33. Jons, G. D., & Miranda, L. E. (1997). Ovarian weight as an index of fecundity, maturity, and spawning periodicity. Journal of Fish Biology, 50(1), 150–156. https://doi.org/10.1111/j.1095-8649.1997.tb01347.x
  34. Kenchington, T. J. (2014). Natural mortality estimators for information-limited fisheries. Fish and Fisheries, 15(4), 533–562. https://doi.org/10.1111/faf.12027
  35. Kindong, R., Zhu, J. F., Dai, X. J., & Tian, S. Q. (2019). Life history parameters and yield per recruit analysis for Tachysurus nitidus and Plagiognathops microlepis in lake Dianshan and their management implications. Turkish Journal of Fisheries and Aquatic Sciences, 19(12). Advance online publication. https://doi.org/10.4194/1303-2712-v19_12_05
  36. Kindong, R., Gao, C., & Tian, S. (2020). Achille Pandong, Qiuyun Ma, Feng Wu & Ousmane Sarr. 2020. Stock status assessments of five small pelagic species in the Atlantic and Pacific Oceans using the Length-Based Bayesian Estimation (LBB) Method. Frontiers in Marine Science, 7, 592082. Advance online publication. https://doi.org/10.3389/fmars.2020.592082
  37. Kirkwood, G. P., & Zara, S. J. (2001). Length Frequency Distribution Analysis (LFDA), Version 5.0. MRAG Ltd.
  38. Kishore, R., & Chin, X. 2001. Age and growth studies at the CFRAMP/IMA regional age and growth laboratory progress of work done and future approaches. In: SinghRenton, S. (Ed.), CARICOM Fishery Report 9, CARICOM Fisheries Unit Belize City, Belize, pp. 74–89
  39. Lee, T. M. 2008. Estimation of life history parameters, biological reference points, and associated uncertainties for wahoo (Acanthocybium solandri) in the waters off eastern Taiwan. Master’s thesis, National Taiwan University.
  40. Lorenzen, K. (2000). Allometry of natural mortality as a basis for assessing optimal release size in fish-stocking programmes. Canadian Journal of Fisheries and Aquatic Sciences, 57(12), 2374–2381. https://doi.org/10.1139/f00-215
  41. Luan. S.H., Dai, X.J., Tian, S.Q., Li, W.W., and Fan, Y.C. 2017. Biology and environmental preferences of Acanthocybium solandri in the southeast Pacific Ocean. Marine Fisheries, Vol: 1-0030-11 (In Chinese).
  42. Mazerolle, Marc J. 2019. Package ‘AICcmodavg’: Model Selection and Multi-model Inference Based on (Q)AIC(c); Version 2.2-2.
  43. McBride, R. S., Richardson, A. K., & Maki, K. L. (2008). Age, growth, and mortality of wahoo, Acanthocybium solandri, from the Atlantic coast of Florida and the Bahamas. Marine and Freshwater Research, 59(9), 799–807. https://doi.org/10.1071/MF08021
  44. Mildenberger, T. K., Taylor, M. H., & Wolff, M. (2017). TropFishR: An R package for fisheries analysis with length-frequency data. Methods in Ecology and Evolution, 8(11), 1520–1527. https://doi.org/10.1111/2041-210X.12791
  45. Mildenberger, T. K. 2017. Single-species fish stock assessment with TropFishR. https://cranr-projectorg/web/packages/TropFishR/vignettes/tutorialhtml
  46. Murray, P. A., & Sarvay, W. B. (1987). Use of ELEFAN programs in the estimation of growth parameters of the wahoo, Acanthocybium solandri, caught off St. Lucia, West Indies. Fishbyte, 5, 14–15.
  47. Murray, P. A., & Joseph, W. B. (1996). Trends in the exploitation of the wahoo, Acanthocybium solandri, landed in St. Lucia. Proceedings of the Gulf and Caribbean Fisheries Institute, 44, 737–746.
  48. Oxenford, H. A., Murray, P. A., & Luckhurst, B. E. (2003). The biology of wahoo (Acanthocybium solandri) in the western central Atlantic. Gulf and Caribbean Research, 15(1), 33–49. https://doi.org/10.18785/gcr.1501.06
  49. Pantazi, V., Mannini, A., Vasilakopoulos, P., Kapiris, K., Megalofonou, P., & Kalogirou, S. (2020). That’s All I Know: Inferring the Status of Extremely Data-Limited Stocks. Frontiers in Marine Science, 7, 583148. https://doi.org/10.3389/fmars.2020.583148
  50. Pauly, D., & Munro, J. (1984). Once more on the comparison of growth in fish and invertebrates. Fishbyte, 2(1), 4–21.
  51. Pauly, D. (1980). On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES Journal of Marine Science, 39(2), 175–192. https://doi.org/10.1093/icesjms/39.2.175
  52. Pauly, D., & David, N. (1981). ELEFAN I, a basic program for the objective extraction of growth parameters from length-frequency
  53. Pons, M., Kell, L., Rudd, M. B., Cope, J. M., & Lucena-Fredou, F. (2019a). Performance of length-based data-limited methods in a multifleet context: Application to small tunas, mackerels, and bonitos in the Atlantic Ocean. ICES Journal of Marine Science, 76(4), 960–973. https://doi.org/10.1093/icesjms/fsz004
  54. Pons M., Lucena-Fredou F., Fredou T., Mourato B. 2019b. Implementation of length-based and catch-based data limited methods for small tunas. SCRS/2019/063.
  55. Pons, M., Cope, J. M., & Kell, L. T. (2020). Comparing performance of catch-based and length-based stock assessment methods in data-limited fisheries. Canadian Journal of Fisheries and Aquatic Sciences, 77(6), 1026–1037. https://doi.org/10.1139/cjfas-2019-0276
  56. Quinn, T. J., & Deriso, R. B. (1999). Quantitative fish dynamics. Oxford University Press, Inc.
  57. Rudd, M. B., & Thorson, J. T. (2018). Accounting for variable recruitment and fishing mortality in length-based stock assessments for data-limited fisheries. Canadian Journal of Fisheries and Aquatic Sciences, 75(7), 1019–1035. https://doi.org/10.1139/cjfas-2017-0143
  58. R Development Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org
  59. Shepherd, J. G. 1987. A weakly parametric method for estimating growth parameters from length composition data, p. 113–119. In D. Pauly and G.R. Morgan (eds). Length-based methods in fisheries research. ICLARM Conf. Proc. 13.
  60. Sparre, P., & Venema, S. C. (1998). Introduction to Tropical Fish Stock Assessment. Part 1. Manual. FAO Fisheries Technical Paper. No. 306.1, Rev. 2. FAO.
  61. Schwamborn, R., Mildenberger, T. K., & Taylor, M. H. 2018. R package version 0.1. Fishboot: Bootstrap-based Methods for the Study of Fish Stocks and Aquatic Populations. https://github.com/rschwamborn/fishboot
  62. Schwamborn, R., Mildenberger, T. K., & Taylor, M. H. 2019.Assessing source of uncertainty in length-based estimates of body growth in populations of fishes and macroinvertebrates with bootstrapped ELEFAN. Journal of Ecological Modeling. https://doi.org/10.1016/j.ecolmodel.2019.01.003
  63. Scrucca, L. (2013). GA: A package for genetic algorithms in R. Journal of Statistical Software, 53(4), 1–37. https://doi.org/10.18637/jss.v053.i04
  64. Taylor, M. H. 2017. fishdynr: fisheries science related population dynamics models. https://github.com/marchtaylor/fishdynr
  65. Taylor, M. H., & Mildenberger, T. K. 2017. Extending electronic length frequency analysis in R. Fisheries Management and Ecology. 24, 330–338. 12232. https://doi.org/10.1111/fme.12232
  66. Theisen, T. C., Bowen, B. W., Lanier, W., & Baldwin, J. D. (2008). High connectivity on a global scale in the pelagic wahoo, Acanthocybium solandri (tuna family Scombridae). Molecular Ecology, 17(19), 4233–4247. https://doi.org/10.1111/j.1365-294X.2008.03913.x PMID:19378403
  67. Then, A. Y., Hoenig, J. M., Hall, N. G., Hewitt, D. A., & Jardim, H. E. E. (2015). Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species. ICES Journal of Marine Science, 72, 82–92. https://doi.org/10.1093/icesjms/fsu136
  68. Viana, D., Hazin, F. H. V., Nunes, D. M., Carvalho, F. C., Véras, D. P., & Travassos, P. (2008). Wahoo Acanthocybium solandri fishery in the vicinity of Saint Peter and Saint Paul Archipelago, Brazil, from 1998 to 2006. Collect. Vol. Sci. Pap. ICCAT, 62, 1662–1670.
  69. Viana, D., Branco, I., Fernandes, C., Fischer, A., Carvalho, F., Travassos, P., & Hazin, F. 2013. Reproductive biology of the wahoo, Acanthocybium solandri (Teleostei: Scombridae) in the Saint Peter and Saint Paul Archipelago, Brazil. International Journal of Plant and Animal Science. ISSN: 2167-0437 Vol. 1 (4), pp. 049–057.
  70. von Bertalanffy, L. (1983). A quantitative theory of organic growth (inquiries on growth laws II). Human Biology, 10, 181–213.
  71. Xiang, Y., Gubian, S., Suomela, B., & Hoeng, J. (2013). Generalized simulated annealing for global optimization: The GenSA Package. The R Journal, 5(1), 13–28. http://rjournal.github.io/archive/2013-1/xiang-gubian-suomela-etal.pdfhttps://doi.org/10.32614/RJ-2013-002
  72. Zischke, M. T., Griffiths, S. P., & Tibbetts, I. R. (2013a). Rapid growth of wahoo (Acanthcybium solandri) in the Coral Sea, based on length-at-age estimates using annual and daily increments on sagittal otoliths. ICES Journal of Marine Science, 70(6), 1128–1139. https://doi.org/10.1093/icesjms/fst039
  73. Zischke, M. T., Farley, J. H., Griffiths, S. P., & Tibbetts, I. R. (2013b). Reproductive biology of wahoo, Acanthocybium solandri, off eastern Australia. Reviews in Fish Biology and Fisheries, 23, 491–506. Advance online publication. https://doi.org/10.1007/s11160-013-9304-z
  74. Zischke, M. T., & Griffiths, S. P. (2015). Per-recruit stock assessment of wahoo (Acanthocybium solandri) in the southwest Pacific Ocean. Fishery Bulletin (Washington, D.C.), 113(4), 407–418. Advance online publication. https://doi.org/10.7755/FB.113.4.4
DOI: https://doi.org/10.26881/oahs.2022.1.10 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 115 - 132
Submitted on: Jul 12, 2021
Accepted on: Nov 8, 2021
Published on: Mar 31, 2022
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Richard Kindong, Feng Wu, Ousmane Sarr, Libin Dai, Siquan Tian, Xiaojie Dai, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.