References
- Abbas, Q.,Yousaf, B., Amina., Ali, M. U., Munir, M. A. M., El-Naggar, A., Rinklebe, J., & Naushad, M. (2020). Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review. Environment International, 138, 105646. https:// doi.org/10.1016/j.envint.2020.105646 PMID:32179325
- Abdal Dayem, A., Hossain, M. K., Lee, S. B., Kim, K., Saha, S. K., Yang, G. M., Choi, H. Y., & Cho, S. G. (2017). The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. International Journal of Molecular Sciences, 18 (1), 120. https://doi.org/10.3390/ijms18010120 PMID:28075405
- Adochite, C., & Andronic, L. (2021). Toxicity of a binary mixture of TiO2 and imidacloprid applied to Chlorella vulgaris. International Journal of Environmental Research and Public Health, 18(15), 7785. https://doi.org/10.3390/ ijerph18157785 PMID:34360075
- Aihemaiti, A., Gao, Y., Meng, Y., Chen, X., Liu, J., Xiang, H., Xu, Y., & Jiang, J. (2020). Review of plant-vanadium physiological interactions, bioaccumulation, and bioremediation of vanadium-contaminated sites. Science of the Total Environment, 712, 135637. https://doi.org/10.1016/j. scitotenv.2019.135637 PMID:31810710
- Alghazeer, R., Whida, F., Abduelrhman, E., Gammoudi, F., & Naili, M. (2013). In vitro antibacterial activity of alkaloid extracts from green, red and brown macroalgae from western coast of Libya. African Journal of Biotechnology, 12(51), 7086-7091.
- Aravantinou, A. F., Andreou, F., & Manariotis, I. D. (2020). Long-term toxicity of ZnO nanoparticles on Scenedesmus rubescens cultivated in semi-batch mode. Nanomaterials (Basel, Switzerland), 10(11), 2262. https://doi.org/10.3390/ nano10112262 PMID:33207538
- Asghari, S., Rajabi, F., Tarrahi, R., Salehi-Lisar, S. Y., Asnaashari, S., Omidi, Y., & Movafeghi, A. (2020). Potential of the green microalga Chlorella vulgaris to fight against fluorene contamination: Evaluation of antioxidant systems and identification of intermediate biodegradation compounds. Journal of Applied Phycology, 32(1), 411-419. https://doi.org/10.1007/s10811-019-01921-7
- Bameri, L., Sourinejad, I., Ghasemi, Z., & Fazelian, N. (2022). Toxicity of TiO2 nanoparticles to the marine microalga Chaetoceros muelleri Lemmermann, 1898 under longterm exposure. Environmental Science and Pollution Research International, 29(20), 30427-30440. https://doi.org/10.1007/s11356-021-17870-z PMID:35000175
- Barhoumi, L., & Dewez, D. (2013). Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris. BioMed Research International, 2013, 647974. Advance online publication. https://doi.org/10.1155/2013/647974 PMID:24369015
- Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3 PMID:942051
- Cardinale, B. J., Bier, R., & Kwan, C. (2012). Effects of TiO2 nanoparticles on the growth and metabolism of three species of freshwater algae. Journal of Nanoparticle Research, 14(8), 1-8. https://doi.org/10.1007/s11051-012-0913-6
- Caverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C. W., Lazzarotto, F., & Margis-Pinheiro, M. (2012). Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology, 35(4), 1011-1019. https://doi.org/10.1590/S1415-47572012000600016 PMID:23412747
- Celekli, A., Gültekin, E., & Bozkurt, H. (2016). Morphological and biochemical responses of Spirogyra setiformis exposed to cadmium. Clean (Weinheim), 44(3), 256-262. https://doi.org/10.1002/clen.201400434
- Chance, B., & Maehly, A. C. (1955). [136] Assay of catalases and peroxidases. Methods in Enzymology, 2, 764-775. https:// doi.org/10.1016/S0076-6879(55)02300-8
- Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Yao Wu Shi Pin Fen Xi, 10(3), 178-182. https://doi.org/10.38212/2224-6614.2748
- Chen, X., Zhang, C., Tan, L., & Wang, J. (2018). Toxicity of Co nanoparticles on three species of marine microalgae. Environmental Pollution, 236, 454-461. https://doi.org/10.1016/j.envpol.2018.01.081 PMID:29414370
- Costals, E. R., Masmitja, G., Almache, E., Pusay, B., Tiwari, K., Saucedo, E., Raj, C. J., Kim, B. C., Puigdollers, J., Martin, I., Voz, C., & Ortega, P. (2021). Atomic layer deposition of vanadium oxide films for crystalline silicon solar cells. Materials Advances, 3(1), 337-345. https://doi.org/10.1039/ D1MA00812A PMID:35128416
- Daglioglu, Y., & Öztürk, B. Y (2018). Effect of concentration and exposure time of ZnO-TiO2 nanocomposite on photosynthetic pigment contents, ROS production ability, and bioaccumulation of freshwater algae (Desmodesmus multivariabilis). Caryologia, 71 (1), 13-23. https://doi.org/1 0.1080/00087114.2017.1400262
- Daglioglu, Y., Öztürk, B. Y., & Khatami, M. (2023). Apoptotic, cytotoxic, antioxidant, and antibacterial activities of biosynthesized silver nanoparticles from nettle leaf. Microscopy Research and Technique, 86(6), 669-685. https://doi.org/10.1002/jemt.24306 PMID:36883432
- Das, S., Roy, A., Barui, A. K., Alabbasi, M. M. A., Kuncha, M., Sistla, R., Sreedhar, B., & Patra, C. R. (2020). Anti-angiogenic vanadium pentoxide nanoparticles for the treatment of melanoma and their in vivo toxicity study. Nanoscale, 12(14), 7604-7621. https://doi.org/10.1039/D0NR00631A PMID:32232245
- DeLorenzo, M. E., Taylor, L. A., Lund, S. A., Pennington, P. L., Strozier, E. D., & Fulton, M. H. (2002). Toxicity and bioconcentration potential of the agricultural pesticide endosulfan in phytoplankton and zooplankton. Archives of Environmental Contamination and Toxicology, 42(2), 173-181. https://doi.org/10.1007/s00244-001-0008-3 PMID:11815808
- Dvořák, P., Krasylenko, Y., Zeiner, A., Šamaj, J., & Takác, T. (2021). Signaling toward reactive oxygen species-scavenging enzymes in plants. Frontiers in Plant Science, 11, 618835. https://doi.org/10.3389/fpls.2020.618835 PMID:33597960
- Fazelian, N., Movafeghi, A., Yousefzadi, M., & Rahimzadeh, M. (2019). Cytotoxic impacts of CuO nanoparticles on the marine microalga Nannochloropsis oculata. Environmental Science and Pollution Research International, 26(17), 17499-17511. https://doi.org/10.1007/s11356-019-05130-0 PMID:31016588
- Feizi, S., Kosari-Nasab, M., Divband, B., Mahjouri, S., & Movafeghi, A. (2022). Comparison of the toxicity of pure and samarium-doped zinc oxide nanoparticles to the green microalga Chlorella vulgaris. Environmental Science and Pollution Research International, 29(21), 32002-32015. https://doi.org/10.1007/s11356-022-18539-x PMID:35015233
- Ferdous, U. T., & Balia Yusof, Z. N. (2021). Insight into potential anticancer activity of algal flavonoids: Current status and challenges. Molecules (Basel, Switzerland), 26(22), 6844. https://doi.org/10.3390/molecules26226844 PMID:34833937
- Foyer, C. H. (2018). Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environmental and Experimental Botany, 154, 134-142. https://doi.org/10.1016/j.envexpbot.2018.05.003 PMID:30283160
- Hamed, S. M., Zinta, G., Klöck, G., Asard, H., Selim, S., & AbdElgawad, H. (2017). Zinc-induced differential oxidative stress and antioxidant responses in Chlorella sorokiniana and Scenedesmus acuminatus. Ecotoxicology and Environmental Safety, 140, 256-263. https://doi.org/10.1016/j.ecoenv.2017.02.055 PMID:28273625
- Hernández-Zamora, M., Cristiani-Urbina, E., Martínez-Jerónimo, F., Perales-Vela, H. V., Ponce-Noyola, T., Montes-Horcasitas, M. C., & Cañizares-Villanueva, R. O. (2015). Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris. Environmental Science and Pollution Research International, 22(14), 10811-10823. https://doi.org/10.1007/s11356-015-4277-1 PMID:25772869
- Janova, A., Kolackova, M., Bytesnikova, Z., Capal, P., Chaloupsky, P., Svec, P., Ridoskova, A., Cernei, N., Klejdus, B.,Richtera, L., Adam, V., & Huska, D. (2021). New insights into mechanisms of copper nanoparticle toxicity in freshwater algae Chlamydomonas reinhardtii: Effects on the pathways of secondary metabolites. Algal Research, 60, 102476. https://doi.org/10.1016/j.aigai.2021.102476
- Karimi, R., Norastehnia, A., Abbaspour, H., Saedisar, S. N. A., & Naeemi, A. S. (2017a). Effects of copper oxide nanoparticles on the growth of Chlorella vulgaris. Progress in Biological Sciences, 7(1), 11-20. https://doi.org/10.22059/ PBS.2018.226951.1253
- Karimi, R., Norastehnia, A., Abbaspour, H., Saedisar, S. N. A., & Naeemi, A. S. (2017b). Toxicity assessment of Anabaena sp. following exposure to copper oxide nanoparticles and sodium chloride. Applied Ecology and Environmental Research, 15(4), 2045-2059. https://doi.org/10.15666/ aeer/1504_20452059
- Karunakaran, G., Suriyaprabha, R., Rajendran, V., & Kannan, N. (2015). Effect of contact angle, zeta potential and particles size on the in vitro studies of Al2 O3 and SiO2 nanoparticles. IET nanobiotechnology, 9(1), 27-34. 10.1049/ iet-nbt.2013.0067
- Kera, Y., Teratani, S., & Hirota, K. (1967). Infrared Spectra of Surface V= O Bond of Vanadium Pentoxide. Bulletin of the Chemical Society of Japan, 40(10), 2458-2458. https://doi.org/10.1246/bcsj.40.2458
- Khan, M., Khan, M. S. A., Borah, K. K., Goswami, Y., Hakeem, K. R., & Chakrabartty, I. (2021). The potential exposure and hazards of metal-based nanoparticles on plants and environment, with special emphasis on ZnO NPs, TiO2 NPs, and AgNPs: A review. Environmental Advances, 6, 100128. https://doi.org/10.1016/j.envadv.2021.100128
- Kim, H. S., Kim, M., Park, W.-K., Yang, W.-G., Nayak, M., Shin, H. S., Cho, K., Kim, D., & Oda, T. (2022). Microalgae as an effective recovery agent for vanadium in aquatic environment. Energies, 15(12), 4467. https://doi.org/10.3390/en15124467
- Klaine, S. J., Alvarez, P. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., Mahendra, S., McLaughlin, M. J., & Lead, J. R. (2008). Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 27(9), 1825-1851. https://doi.org/10.1897/08-090.1 PMID:19086204
- Kumar, K. S., Ganesan, K., & Rao, P. S. (2008). Antioxidant potential of solvent extracts of Kappaphycus alvarezii (Doty) Doty-An edible seaweed. Food Chemistry, 107(1), 289-295. https://doi.org/10.1016/j.foodchem.2007.08.016
- Li, X., Sun, H., Mao, X., Lao, Y., & Chen, F. (2020). Enhanced photosynthesis of carotenoids in microalgae driven by light-harvesting gold nanoparticles. ACS Sustainable Chemistry & Engineering, 8(20), 7600-7608. https://doi.org/10.1021/acssuschemeng.0c00315
- Li, Z., Cao, C., Li, M., Wang, L., Zhu, D., Xu, F., Huang, A., Jin, P., Yu, L., & Cao, X. (2023). Gradient variation oxygen-content vanadium-oxygen composite films with enhanced crystallinity and excellent durability for smart windows. ACS Applied Materials & Interfaces, 15(7), 9401-9411. 10.1021/acsami.2c21188.
- Li, Z., Juneau, P., Lian, Y., Zhang, W., Wang, S., Wang, C., Shu, L., Yan, Q., He, Z., & Xu, K. (2020). Effects of titanium dioxide nanoparticles on photosynthetic and antioxidative processes of Scenedesmus obliquus. Plants, 9(12), 1748. https://doi.org/10.3390/plants9121748 PMID:33321890
- Liu, H., Weisman, D., Ye, Y B., Cui, B., Huang, Y H., Colon-Carmona, A., & Wang, Z. H. (2009). An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Science, 176(3), 375-382. https://doi.org/10.1016/j.plantsci.2008.12.002
- Liu, Y., Wang, S., Wang, Z., Ye, N., Fang, H., & Wang, D. (2018). TiO2, SiO2 and ZrO2 nanoparticles synergistically provoke cellular oxidative damage in freshwater microalgae. Nanomaterials (Basel, Switzerland), 8(2), 95. https://doi.org/10.3390/nano8020095 PMID:29419775
- Ma, C., Taya, M., & Xu, C. (2008). Smart sunglasses based on electrochromic polymers. Polymer Engineering and Science, 48(11), 2224-2228. https://doi.org/10.1002/pen.21169
- Malakar, A., Kanel, S. R., Ray, C., Snow, D. D., & Nadagouda, M. N. (2021). Nanomaterials in the environment, human exposure pathway, and health effects: A review. The Science of the Total Environment, 759, 143470. https://doi.org/10.1016/j.scitotenv.2020.143470 PMID:33248790
- Matouke, M. M., Elewa, D. T., & Abdullahi, K. (2018). Binary effect of titanium dioxide nanoparticles (nTio2) and phosphorus on microalgae (Chlorella ‘Ellipsoides Gerneck, 1907). Aquatic Toxicology (Amsterdam, Netherlands), 198, 40-48. https://doi.org/10.1016/j.aquatox.2018.02.009 PMID:29501936
- Meda, A., Lamien, C. E., Romito, M., Millogo, J., & Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91 (3), 571-577. https://doi.org/10.1016/j.foodchem.2004.10.006
- Melato, F. A., Regnier, T., McCrindle, R. I., & Mokgalaka, N. S. (2012). Impact of metals on secondary metabolites production and plant morphology in vetiver grass (Chrysopogon zizanioides). South African Journal of Chemistry. Suid-Afrikaanse Tydskrif vir Chemie, 65, 178-183.
- Middepogu, A., Hou, J., Gao, X., & Lin, D. (2018). Effect and mechanism of TiO2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa. Ecotoxicology and Environmental Safety, 161, 497-506. https://doi.org/10.1016/j.ecoenv.2018.06.027 PMID:29913418
- Movafeghi, A., Khataee, A., Abedi, M., Tarrahi, R., Dadpour, M., & Vafaei, F. (2018). Effects of TiO2 nanoparticles on the aquatic plant Spirodela polyrrhiza: Evaluation of growth parameters, pigment contents and antioxidant enzyme activities. Journal of Environmental Sciences (China), 64, 130-138. https://doi.org/10.1016/j.jes.2016.12.020 PMID:29478632
- Movafeghi, A., Khataee, A., Rezaee, A., Kosari-Nasab, M., & Tarrahi, R. (2019). Toxicity of cadmium selenide nanoparticles on the green microalga Chlorella vulgaris : Inducing antioxidative defense response. Environmental Science and Pollution Research International, 26(36), 36380-36387. https://doi.org/10.1007/s11356-019-06675-w PMID:31713820
- Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant & Cell Physiology, 22(5), 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
- Natalio, F., André, R., Hartog, A. F., Stoll, B., Jochum, K. P., Wever, R., & Tremel, W. (2012). Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nature Nanotechnology, 7(8), 530-535. https:// doi.org/10.1038/nnano.2012.91 PMID:22751222
- Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A. J., Quigg, A., Santschi, P. H., & Sigg, L. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology (London, England), 17(5), 372-386. https://doi.org/10.1007/s10646-008-0214-0 PMID:18461442
- Nazari, F., Movafeghi, A., Jafarirad, S., Kosari-Nasab, M., & Divband, B. (2018). Synthesis of reduced graphene oxidesilver nanocomposites and assessing their toxicity on the green microalga Chlorella vulgaris. BioNanoScience, 8(4), 997-1007. https://doi.org/10.1007/s12668-018-0561-0
- Niu, J. S., Liu, I. P., Pan, Y L., Tsai, J. H., & Liu, W. C. (2021). Study of a formaldehyde gas sensor based on a sputtered vanadium pentoxide thin film decorated with gold nanoparticles. ECS Journal of Solid State Science and Technology : JSS, 10(8), 087001. https://doi.org/10.1149/2162-8777/ac1691
- Omoarelojie, L. O., Kulkarni, M. G., Finnie, J. F., & van Staden, J. (2021). Biostimulants and the modulation of plant antioxidant systems and properties. In Biostimulants for Crops from Seed Germination to Plant Development ( 333-363). Academic Press., https://doi.org/10.1016/B978-0-12-823048-0.00008-3
- Ozkaleli, M., & Erdem, A. (2018). Biotoxicity ofTiO2 nanoparticles on Raphidocelis subcapitata microalgae exemplified by membrane deformation. International Journal of Environmental Research and Public Health, 15(3), 416. https://doi.org/10.3390/ijerph15030416 PMID:29495534
- Ozturk, B. Y., Asikkutlu, B., Akkoz, C., & Atic, T. (2019). Molecular and morphological characterization of several cyanobacteria and chlorophyta species isolated from lakes in Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 19(8), 635-643. https://doi.org/10.4194/1303-2712-v19_8_01
- Padash, A., Heydarnajad Giglou, R., Torabi Giglou, M., Azarmi, R., Mokhtari, A. M., Gohari, G., Amini, M., Cruz, C., & Ghorbanpour, M. (2023). Comparing the toxicity of tungsten and vanadium oxide nanoparticles on Spirulina platensis. Environmental Science and Pollution Research International, 30(15), 45067-45076. https://doi.org/10.1007/s11356-023-25461-3 PMID:36697989
- Rai, M., & Biswas, J. K. (Eds) (2018). Nanomaterials: Ecotoxicity, safety, and public Perception. Cham, Switzerland: Springer International Publishing., 10.1007/978-3-030-05144-0
- Saxena, P., Saharan, V., Baroliya, P. K., Gour, V. S., Rai, M. K., & Harish. (2021). Mechanism of nanotoxicity in Chlorella vulgaris exposed to zinc and iron oxide. Toxicology Reports, 8, 724-731. https://doi.org/10.1016/j.toxrep.2021.03.023 PMID:33868956
- Sieradzka, K., Wojcieszak, D., Kaczmarek, D., Domaradzki, J., Kiriakidis, G., Aperathitis, E., Kambilafka, V., Placido, F. & Song, S. (2011). Structural and optical properties of vanadium oxides prepared by microwave-assisted reactive magnetron sputtering. Optica Applicata, 41 (2), 463-469.
- Suman, T. Y., Radhika Rajasree, S. R., & Kirubagaran, R. (2015). Evaluation of zinc oxide nanoparticles toxicity on marine algae chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicology and Environmental Safety, 113, 23-30. https://doi.org/10.1016/j.ecoenv.2014.11.015 PMID:25483368
- Walters, C. R., Pool, E. J., & Somerset, V. S. (2014). Ecotoxicity of silver nanomaterials in the aquatic environment: A review of literature and gaps in nano-toxicological research. Journal of Environmental Science and Health. Part A, Toxic/ Hazardous Substances & Environmental Engineering, 49 (13), 1588-1601. https://doi.org/10.1080/10934529.2014.9385 36 PMID:25137546
- Wang, F., Guan, W., Xu, L., Ding, Z., Ma, H., Ma, A., & Terry, N. (2019). Effects of nanoparticles on algae: Adsorption, distribution, ecotoxicity and fate. Applied Sciences (Basel, Switzerland), 9(8), 1534. https://doi.org/10.3390/ app9081534
- Wei, X., Yu, J., Ding, L., Hu, J., & Jiang, W. (2017). Effect of oxide nanoparticles on the morphology and fluidity of phospholipid membranes and the role of hydrogen bonds. Journal of Environmental Sciences (China), 57, 221-230. https://doi.org/10.1016/j.jes.2017.02.011 PMID:28647242
- Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307-313. https://doi.org/10.1016/S0176-1617(11)81192-2
- Winterbourn, C. C., McGrath, B. M., & Carrell, R. W. (1976). Reactions involving superoxide and normal and unstable haemoglobins. The Biochemical Journal, 155(3), 493-502. https://doi.org/10.1042/bj1550493 PMID:182128
- Wu, M., Zhang, X., Gao, S., Cheng, X., Rong, Z., Xu, Y., Zhao, H., & Huo, L. (2013). Construction of monodisperse vanadium pentoxide hollow spheres via a facile route and triethylamine sensing property. CrystEngComm, 15(46), 10123-10131. https://doi.org/10.1039/c3ce41471j
- Xaaldi Kalhor, A., Movafeghi, A., Mohammadi-Nassab, A. D., Abedi, E., & Bahrami, A. (2017). Potential of the green alga Chlorella vulgaris for biodegradation of crude oil hydrocarbons. Marine Pollution Bulletin, 123(1-2), 286-290. https://doi.org/10.1016/j.marpolbul.2017.08.045 PMID:28844453
- Xi, W. S., Song, Z. M., Chen, Z., Chen, N., Yan, G. H., Gao, Y., Cao, A., Liu, Y., & Wang, H. (2019). Short-term and long-term toxicological effects of vanadium dioxide nanoparticles on A549 cells. Environmental Science. Nano, 6(2), 565-579. https://doi.org/10.1039/C8EN00959G
- Xi, W. S., Li, J. B., Liu, Y. Y., Wu, H., Cao, A., & Wang, H. (2021). Cytotoxicity and genotoxicity of low-dose vanadium dioxide nanoparticles to lung cells following longterm exposure. Toxicology, 459, 152859. https://doi.org/10.1016/j.tox.2021.152859 PMID:34273449
- Xia, B., Chen, B., Sun, X., Qu, K., Ma, F., & Du, M. (2015). Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium: Growth inhibition, oxidative stress and internalization. The Science of the Total Environment, 508, 525-533. https://doi.org/10.1016/j.scitotenv.2014.11.066 PMID:25483108
- Yu, Z., Li, Q., Wang, J., Yu, Y., Wang, Y., Zhou, Q., & Li, P. (2020). Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Research Letters, 15(1), 115. https://doi.org/10.1186/s11671-020-03344-7 PMID:32436107
- Yuan, S., Duan, X., Liu, J., Ye, Y., Lv, F., Liu, T., Wang, Q., & Zhang, X. (2021). Recent progress on transition metal oxides as advanced materials for energy conversion and storage. Energy Storage Materials, 42, 317-369. https://doi.org/10.1016/j.ensm.2021.07.007