Have a personal or library account? Click to login
Defense responses of the green microalgae Chlorella vulgaris to the vanadium pentoxide nanoparticles Cover

Defense responses of the green microalgae Chlorella vulgaris to the vanadium pentoxide nanoparticles

Open Access
|Dec 2023

References

  1. Abbas, Q.,Yousaf, B., Amina., Ali, M. U., Munir, M. A. M., El-Naggar, A., Rinklebe, J., & Naushad, M. (2020). Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review. Environment International, 138, 105646. https:// doi.org/10.1016/j.envint.2020.105646 PMID:32179325
  2. Abdal Dayem, A., Hossain, M. K., Lee, S. B., Kim, K., Saha, S. K., Yang, G. M., Choi, H. Y., & Cho, S. G. (2017). The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. International Journal of Molecular Sciences, 18 (1), 120. https://doi.org/10.3390/ijms18010120 PMID:28075405
  3. Adochite, C., & Andronic, L. (2021). Toxicity of a binary mixture of TiO2 and imidacloprid applied to Chlorella vulgaris. International Journal of Environmental Research and Public Health, 18(15), 7785. https://doi.org/10.3390/ ijerph18157785 PMID:34360075
  4. Aihemaiti, A., Gao, Y., Meng, Y., Chen, X., Liu, J., Xiang, H., Xu, Y., & Jiang, J. (2020). Review of plant-vanadium physiological interactions, bioaccumulation, and bioremediation of vanadium-contaminated sites. Science of the Total Environment, 712, 135637. https://doi.org/10.1016/j. scitotenv.2019.135637 PMID:31810710
  5. Alghazeer, R., Whida, F., Abduelrhman, E., Gammoudi, F., & Naili, M. (2013). In vitro antibacterial activity of alkaloid extracts from green, red and brown macroalgae from western coast of Libya. African Journal of Biotechnology, 12(51), 7086-7091.
  6. Aravantinou, A. F., Andreou, F., & Manariotis, I. D. (2020). Long-term toxicity of ZnO nanoparticles on Scenedesmus rubescens cultivated in semi-batch mode. Nanomaterials (Basel, Switzerland), 10(11), 2262. https://doi.org/10.3390/ nano10112262 PMID:33207538
  7. Asghari, S., Rajabi, F., Tarrahi, R., Salehi-Lisar, S. Y., Asnaashari, S., Omidi, Y., & Movafeghi, A. (2020). Potential of the green microalga Chlorella vulgaris to fight against fluorene contamination: Evaluation of antioxidant systems and identification of intermediate biodegradation compounds. Journal of Applied Phycology, 32(1), 411-419. https://doi.org/10.1007/s10811-019-01921-7
  8. Bameri, L., Sourinejad, I., Ghasemi, Z., & Fazelian, N. (2022). Toxicity of TiO2 nanoparticles to the marine microalga Chaetoceros muelleri Lemmermann, 1898 under longterm exposure. Environmental Science and Pollution Research International, 29(20), 30427-30440. https://doi.org/10.1007/s11356-021-17870-z PMID:35000175
  9. Barhoumi, L., & Dewez, D. (2013). Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris. BioMed Research International, 2013, 647974. Advance online publication. https://doi.org/10.1155/2013/647974 PMID:24369015
  10. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3 PMID:942051
  11. Cardinale, B. J., Bier, R., & Kwan, C. (2012). Effects of TiO2 nanoparticles on the growth and metabolism of three species of freshwater algae. Journal of Nanoparticle Research, 14(8), 1-8. https://doi.org/10.1007/s11051-012-0913-6
  12. Caverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C. W., Lazzarotto, F., & Margis-Pinheiro, M. (2012). Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology, 35(4), 1011-1019. https://doi.org/10.1590/S1415-47572012000600016 PMID:23412747
  13. Celekli, A., Gültekin, E., & Bozkurt, H. (2016). Morphological and biochemical responses of Spirogyra setiformis exposed to cadmium. Clean (Weinheim), 44(3), 256-262. https://doi.org/10.1002/clen.201400434
  14. Chance, B., & Maehly, A. C. (1955). [136] Assay of catalases and peroxidases. Methods in Enzymology, 2, 764-775. https:// doi.org/10.1016/S0076-6879(55)02300-8
  15. Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Yao Wu Shi Pin Fen Xi, 10(3), 178-182. https://doi.org/10.38212/2224-6614.2748
  16. Chen, X., Zhang, C., Tan, L., & Wang, J. (2018). Toxicity of Co nanoparticles on three species of marine microalgae. Environmental Pollution, 236, 454-461. https://doi.org/10.1016/j.envpol.2018.01.081 PMID:29414370
  17. Costals, E. R., Masmitja, G., Almache, E., Pusay, B., Tiwari, K., Saucedo, E., Raj, C. J., Kim, B. C., Puigdollers, J., Martin, I., Voz, C., & Ortega, P. (2021). Atomic layer deposition of vanadium oxide films for crystalline silicon solar cells. Materials Advances, 3(1), 337-345. https://doi.org/10.1039/ D1MA00812A PMID:35128416
  18. Daglioglu, Y., & Öztürk, B. Y (2018). Effect of concentration and exposure time of ZnO-TiO2 nanocomposite on photosynthetic pigment contents, ROS production ability, and bioaccumulation of freshwater algae (Desmodesmus multivariabilis). Caryologia, 71 (1), 13-23. https://doi.org/1 0.1080/00087114.2017.1400262
  19. Daglioglu, Y., Öztürk, B. Y., & Khatami, M. (2023). Apoptotic, cytotoxic, antioxidant, and antibacterial activities of biosynthesized silver nanoparticles from nettle leaf. Microscopy Research and Technique, 86(6), 669-685. https://doi.org/10.1002/jemt.24306 PMID:36883432
  20. Das, S., Roy, A., Barui, A. K., Alabbasi, M. M. A., Kuncha, M., Sistla, R., Sreedhar, B., & Patra, C. R. (2020). Anti-angiogenic vanadium pentoxide nanoparticles for the treatment of melanoma and their in vivo toxicity study. Nanoscale, 12(14), 7604-7621. https://doi.org/10.1039/D0NR00631A PMID:32232245
  21. DeLorenzo, M. E., Taylor, L. A., Lund, S. A., Pennington, P. L., Strozier, E. D., & Fulton, M. H. (2002). Toxicity and bioconcentration potential of the agricultural pesticide endosulfan in phytoplankton and zooplankton. Archives of Environmental Contamination and Toxicology, 42(2), 173-181. https://doi.org/10.1007/s00244-001-0008-3 PMID:11815808
  22. Dvořák, P., Krasylenko, Y., Zeiner, A., Šamaj, J., & Takác, T. (2021). Signaling toward reactive oxygen species-scavenging enzymes in plants. Frontiers in Plant Science, 11, 618835. https://doi.org/10.3389/fpls.2020.618835 PMID:33597960
  23. Fazelian, N., Movafeghi, A., Yousefzadi, M., & Rahimzadeh, M. (2019). Cytotoxic impacts of CuO nanoparticles on the marine microalga Nannochloropsis oculata. Environmental Science and Pollution Research International, 26(17), 17499-17511. https://doi.org/10.1007/s11356-019-05130-0 PMID:31016588
  24. Feizi, S., Kosari-Nasab, M., Divband, B., Mahjouri, S., & Movafeghi, A. (2022). Comparison of the toxicity of pure and samarium-doped zinc oxide nanoparticles to the green microalga Chlorella vulgaris. Environmental Science and Pollution Research International, 29(21), 32002-32015. https://doi.org/10.1007/s11356-022-18539-x PMID:35015233
  25. Ferdous, U. T., & Balia Yusof, Z. N. (2021). Insight into potential anticancer activity of algal flavonoids: Current status and challenges. Molecules (Basel, Switzerland), 26(22), 6844. https://doi.org/10.3390/molecules26226844 PMID:34833937
  26. Foyer, C. H. (2018). Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environmental and Experimental Botany, 154, 134-142. https://doi.org/10.1016/j.envexpbot.2018.05.003 PMID:30283160
  27. Hamed, S. M., Zinta, G., Klöck, G., Asard, H., Selim, S., & AbdElgawad, H. (2017). Zinc-induced differential oxidative stress and antioxidant responses in Chlorella sorokiniana and Scenedesmus acuminatus. Ecotoxicology and Environmental Safety, 140, 256-263. https://doi.org/10.1016/j.ecoenv.2017.02.055 PMID:28273625
  28. Hernández-Zamora, M., Cristiani-Urbina, E., Martínez-Jerónimo, F., Perales-Vela, H. V., Ponce-Noyola, T., Montes-Horcasitas, M. C., & Cañizares-Villanueva, R. O. (2015). Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris. Environmental Science and Pollution Research International, 22(14), 10811-10823. https://doi.org/10.1007/s11356-015-4277-1 PMID:25772869
  29. Janova, A., Kolackova, M., Bytesnikova, Z., Capal, P., Chaloupsky, P., Svec, P., Ridoskova, A., Cernei, N., Klejdus, B.,Richtera, L., Adam, V., & Huska, D. (2021). New insights into mechanisms of copper nanoparticle toxicity in freshwater algae Chlamydomonas reinhardtii: Effects on the pathways of secondary metabolites. Algal Research, 60, 102476. https://doi.org/10.1016/j.aigai.2021.102476
  30. Karimi, R., Norastehnia, A., Abbaspour, H., Saedisar, S. N. A., & Naeemi, A. S. (2017a). Effects of copper oxide nanoparticles on the growth of Chlorella vulgaris. Progress in Biological Sciences, 7(1), 11-20. https://doi.org/10.22059/ PBS.2018.226951.1253
  31. Karimi, R., Norastehnia, A., Abbaspour, H., Saedisar, S. N. A., & Naeemi, A. S. (2017b). Toxicity assessment of Anabaena sp. following exposure to copper oxide nanoparticles and sodium chloride. Applied Ecology and Environmental Research, 15(4), 2045-2059. https://doi.org/10.15666/ aeer/1504_20452059
  32. Karunakaran, G., Suriyaprabha, R., Rajendran, V., & Kannan, N. (2015). Effect of contact angle, zeta potential and particles size on the in vitro studies of Al2 O3 and SiO2 nanoparticles. IET nanobiotechnology, 9(1), 27-34. 10.1049/ iet-nbt.2013.0067
  33. Kera, Y., Teratani, S., & Hirota, K. (1967). Infrared Spectra of Surface V= O Bond of Vanadium Pentoxide. Bulletin of the Chemical Society of Japan, 40(10), 2458-2458. https://doi.org/10.1246/bcsj.40.2458
  34. Khan, M., Khan, M. S. A., Borah, K. K., Goswami, Y., Hakeem, K. R., & Chakrabartty, I. (2021). The potential exposure and hazards of metal-based nanoparticles on plants and environment, with special emphasis on ZnO NPs, TiO2 NPs, and AgNPs: A review. Environmental Advances, 6, 100128. https://doi.org/10.1016/j.envadv.2021.100128
  35. Kim, H. S., Kim, M., Park, W.-K., Yang, W.-G., Nayak, M., Shin, H. S., Cho, K., Kim, D., & Oda, T. (2022). Microalgae as an effective recovery agent for vanadium in aquatic environment. Energies, 15(12), 4467. https://doi.org/10.3390/en15124467
  36. Klaine, S. J., Alvarez, P. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., Mahendra, S., McLaughlin, M. J., & Lead, J. R. (2008). Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 27(9), 1825-1851. https://doi.org/10.1897/08-090.1 PMID:19086204
  37. Kumar, K. S., Ganesan, K., & Rao, P. S. (2008). Antioxidant potential of solvent extracts of Kappaphycus alvarezii (Doty) Doty-An edible seaweed. Food Chemistry, 107(1), 289-295. https://doi.org/10.1016/j.foodchem.2007.08.016
  38. Li, X., Sun, H., Mao, X., Lao, Y., & Chen, F. (2020). Enhanced photosynthesis of carotenoids in microalgae driven by light-harvesting gold nanoparticles. ACS Sustainable Chemistry & Engineering, 8(20), 7600-7608. https://doi.org/10.1021/acssuschemeng.0c00315
  39. Li, Z., Cao, C., Li, M., Wang, L., Zhu, D., Xu, F., Huang, A., Jin, P., Yu, L., & Cao, X. (2023). Gradient variation oxygen-content vanadium-oxygen composite films with enhanced crystallinity and excellent durability for smart windows. ACS Applied Materials & Interfaces, 15(7), 9401-9411. 10.1021/acsami.2c21188.
  40. Li, Z., Juneau, P., Lian, Y., Zhang, W., Wang, S., Wang, C., Shu, L., Yan, Q., He, Z., & Xu, K. (2020). Effects of titanium dioxide nanoparticles on photosynthetic and antioxidative processes of Scenedesmus obliquus. Plants, 9(12), 1748. https://doi.org/10.3390/plants9121748 PMID:33321890
  41. Liu, H., Weisman, D., Ye, Y B., Cui, B., Huang, Y H., Colon-Carmona, A., & Wang, Z. H. (2009). An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Science, 176(3), 375-382. https://doi.org/10.1016/j.plantsci.2008.12.002
  42. Liu, Y., Wang, S., Wang, Z., Ye, N., Fang, H., & Wang, D. (2018). TiO2, SiO2 and ZrO2 nanoparticles synergistically provoke cellular oxidative damage in freshwater microalgae. Nanomaterials (Basel, Switzerland), 8(2), 95. https://doi.org/10.3390/nano8020095 PMID:29419775
  43. Ma, C., Taya, M., & Xu, C. (2008). Smart sunglasses based on electrochromic polymers. Polymer Engineering and Science, 48(11), 2224-2228. https://doi.org/10.1002/pen.21169
  44. Malakar, A., Kanel, S. R., Ray, C., Snow, D. D., & Nadagouda, M. N. (2021). Nanomaterials in the environment, human exposure pathway, and health effects: A review. The Science of the Total Environment, 759, 143470. https://doi.org/10.1016/j.scitotenv.2020.143470 PMID:33248790
  45. Matouke, M. M., Elewa, D. T., & Abdullahi, K. (2018). Binary effect of titanium dioxide nanoparticles (nTio2) and phosphorus on microalgae (Chlorella ‘Ellipsoides Gerneck, 1907). Aquatic Toxicology (Amsterdam, Netherlands), 198, 40-48. https://doi.org/10.1016/j.aquatox.2018.02.009 PMID:29501936
  46. Meda, A., Lamien, C. E., Romito, M., Millogo, J., & Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91 (3), 571-577. https://doi.org/10.1016/j.foodchem.2004.10.006
  47. Melato, F. A., Regnier, T., McCrindle, R. I., & Mokgalaka, N. S. (2012). Impact of metals on secondary metabolites production and plant morphology in vetiver grass (Chrysopogon zizanioides). South African Journal of Chemistry. Suid-Afrikaanse Tydskrif vir Chemie, 65, 178-183.
  48. Middepogu, A., Hou, J., Gao, X., & Lin, D. (2018). Effect and mechanism of TiO2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa. Ecotoxicology and Environmental Safety, 161, 497-506. https://doi.org/10.1016/j.ecoenv.2018.06.027 PMID:29913418
  49. Movafeghi, A., Khataee, A., Abedi, M., Tarrahi, R., Dadpour, M., & Vafaei, F. (2018). Effects of TiO2 nanoparticles on the aquatic plant Spirodela polyrrhiza: Evaluation of growth parameters, pigment contents and antioxidant enzyme activities. Journal of Environmental Sciences (China), 64, 130-138. https://doi.org/10.1016/j.jes.2016.12.020 PMID:29478632
  50. Movafeghi, A., Khataee, A., Rezaee, A., Kosari-Nasab, M., & Tarrahi, R. (2019). Toxicity of cadmium selenide nanoparticles on the green microalga Chlorella vulgaris : Inducing antioxidative defense response. Environmental Science and Pollution Research International, 26(36), 36380-36387. https://doi.org/10.1007/s11356-019-06675-w PMID:31713820
  51. Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant & Cell Physiology, 22(5), 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
  52. Natalio, F., André, R., Hartog, A. F., Stoll, B., Jochum, K. P., Wever, R., & Tremel, W. (2012). Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nature Nanotechnology, 7(8), 530-535. https:// doi.org/10.1038/nnano.2012.91 PMID:22751222
  53. Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A. J., Quigg, A., Santschi, P. H., & Sigg, L. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology (London, England), 17(5), 372-386. https://doi.org/10.1007/s10646-008-0214-0 PMID:18461442
  54. Nazari, F., Movafeghi, A., Jafarirad, S., Kosari-Nasab, M., & Divband, B. (2018). Synthesis of reduced graphene oxidesilver nanocomposites and assessing their toxicity on the green microalga Chlorella vulgaris. BioNanoScience, 8(4), 997-1007. https://doi.org/10.1007/s12668-018-0561-0
  55. Niu, J. S., Liu, I. P., Pan, Y L., Tsai, J. H., & Liu, W. C. (2021). Study of a formaldehyde gas sensor based on a sputtered vanadium pentoxide thin film decorated with gold nanoparticles. ECS Journal of Solid State Science and Technology : JSS, 10(8), 087001. https://doi.org/10.1149/2162-8777/ac1691
  56. Omoarelojie, L. O., Kulkarni, M. G., Finnie, J. F., & van Staden, J. (2021). Biostimulants and the modulation of plant antioxidant systems and properties. In Biostimulants for Crops from Seed Germination to Plant Development ( 333-363). Academic Press., https://doi.org/10.1016/B978-0-12-823048-0.00008-3
  57. Ozkaleli, M., & Erdem, A. (2018). Biotoxicity ofTiO2 nanoparticles on Raphidocelis subcapitata microalgae exemplified by membrane deformation. International Journal of Environmental Research and Public Health, 15(3), 416. https://doi.org/10.3390/ijerph15030416 PMID:29495534
  58. Ozturk, B. Y., Asikkutlu, B., Akkoz, C., & Atic, T. (2019). Molecular and morphological characterization of several cyanobacteria and chlorophyta species isolated from lakes in Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 19(8), 635-643. https://doi.org/10.4194/1303-2712-v19_8_01
  59. Padash, A., Heydarnajad Giglou, R., Torabi Giglou, M., Azarmi, R., Mokhtari, A. M., Gohari, G., Amini, M., Cruz, C., & Ghorbanpour, M. (2023). Comparing the toxicity of tungsten and vanadium oxide nanoparticles on Spirulina platensis. Environmental Science and Pollution Research International, 30(15), 45067-45076. https://doi.org/10.1007/s11356-023-25461-3 PMID:36697989
  60. Rai, M., & Biswas, J. K. (Eds) (2018). Nanomaterials: Ecotoxicity, safety, and public Perception. Cham, Switzerland: Springer International Publishing., 10.1007/978-3-030-05144-0
  61. Saxena, P., Saharan, V., Baroliya, P. K., Gour, V. S., Rai, M. K., & Harish. (2021). Mechanism of nanotoxicity in Chlorella vulgaris exposed to zinc and iron oxide. Toxicology Reports, 8, 724-731. https://doi.org/10.1016/j.toxrep.2021.03.023 PMID:33868956
  62. Sieradzka, K., Wojcieszak, D., Kaczmarek, D., Domaradzki, J., Kiriakidis, G., Aperathitis, E., Kambilafka, V., Placido, F. & Song, S. (2011). Structural and optical properties of vanadium oxides prepared by microwave-assisted reactive magnetron sputtering. Optica Applicata, 41 (2), 463-469.
  63. Suman, T. Y., Radhika Rajasree, S. R., & Kirubagaran, R. (2015). Evaluation of zinc oxide nanoparticles toxicity on marine algae chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicology and Environmental Safety, 113, 23-30. https://doi.org/10.1016/j.ecoenv.2014.11.015 PMID:25483368
  64. Walters, C. R., Pool, E. J., & Somerset, V. S. (2014). Ecotoxicity of silver nanomaterials in the aquatic environment: A review of literature and gaps in nano-toxicological research. Journal of Environmental Science and Health. Part A, Toxic/ Hazardous Substances & Environmental Engineering, 49 (13), 1588-1601. https://doi.org/10.1080/10934529.2014.9385 36 PMID:25137546
  65. Wang, F., Guan, W., Xu, L., Ding, Z., Ma, H., Ma, A., & Terry, N. (2019). Effects of nanoparticles on algae: Adsorption, distribution, ecotoxicity and fate. Applied Sciences (Basel, Switzerland), 9(8), 1534. https://doi.org/10.3390/ app9081534
  66. Wei, X., Yu, J., Ding, L., Hu, J., & Jiang, W. (2017). Effect of oxide nanoparticles on the morphology and fluidity of phospholipid membranes and the role of hydrogen bonds. Journal of Environmental Sciences (China), 57, 221-230. https://doi.org/10.1016/j.jes.2017.02.011 PMID:28647242
  67. Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307-313. https://doi.org/10.1016/S0176-1617(11)81192-2
  68. Winterbourn, C. C., McGrath, B. M., & Carrell, R. W. (1976). Reactions involving superoxide and normal and unstable haemoglobins. The Biochemical Journal, 155(3), 493-502. https://doi.org/10.1042/bj1550493 PMID:182128
  69. Wu, M., Zhang, X., Gao, S., Cheng, X., Rong, Z., Xu, Y., Zhao, H., & Huo, L. (2013). Construction of monodisperse vanadium pentoxide hollow spheres via a facile route and triethylamine sensing property. CrystEngComm, 15(46), 10123-10131. https://doi.org/10.1039/c3ce41471j
  70. Xaaldi Kalhor, A., Movafeghi, A., Mohammadi-Nassab, A. D., Abedi, E., & Bahrami, A. (2017). Potential of the green alga Chlorella vulgaris for biodegradation of crude oil hydrocarbons. Marine Pollution Bulletin, 123(1-2), 286-290. https://doi.org/10.1016/j.marpolbul.2017.08.045 PMID:28844453
  71. Xi, W. S., Song, Z. M., Chen, Z., Chen, N., Yan, G. H., Gao, Y., Cao, A., Liu, Y., & Wang, H. (2019). Short-term and long-term toxicological effects of vanadium dioxide nanoparticles on A549 cells. Environmental Science. Nano, 6(2), 565-579. https://doi.org/10.1039/C8EN00959G
  72. Xi, W. S., Li, J. B., Liu, Y. Y., Wu, H., Cao, A., & Wang, H. (2021). Cytotoxicity and genotoxicity of low-dose vanadium dioxide nanoparticles to lung cells following longterm exposure. Toxicology, 459, 152859. https://doi.org/10.1016/j.tox.2021.152859 PMID:34273449
  73. Xia, B., Chen, B., Sun, X., Qu, K., Ma, F., & Du, M. (2015). Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium: Growth inhibition, oxidative stress and internalization. The Science of the Total Environment, 508, 525-533. https://doi.org/10.1016/j.scitotenv.2014.11.066 PMID:25483108
  74. Yu, Z., Li, Q., Wang, J., Yu, Y., Wang, Y., Zhou, Q., & Li, P. (2020). Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Research Letters, 15(1), 115. https://doi.org/10.1186/s11671-020-03344-7 PMID:32436107
  75. Yuan, S., Duan, X., Liu, J., Ye, Y., Lv, F., Liu, T., Wang, Q., & Zhang, X. (2021). Recent progress on transition metal oxides as advanced materials for energy conversion and storage. Energy Storage Materials, 42, 317-369. https://doi.org/10.1016/j.ensm.2021.07.007
DOI: https://doi.org/10.26881/oahs-2023.4.06 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 446 - 460
Submitted on: Apr 12, 2023
Accepted on: Jun 13, 2023
Published on: Dec 31, 2023
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Hanifeh Akbarian Kalehjahi, Morteza Kosari-Nasab, Mojtaba Amini, Ali Movafeghi, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.