References
- Avşar, D. (1998). Balikçilik biyolojisi ve populasyon dinamiği. Nobel Yayinevi.
- Ababouch, L., & Fipi, F. (2015). Fisheries and aquaculture in the context of blue economy. Feeding Africa, 2(21–23), 1-13.
- Ahlgren, P., Jarneving, B., & Rousseau, R. (2003). Requirements for a cocitation similarity measure, with special reference to Pearson’s correlation coefficient. Journal of the American Society for Information Science and Technology, 54(6), 550–560. https://doi.org/10.1002/asi.10242
- Anklam, E., & Battaglia, R. (2001). Food analysis and consumer protection. Trends in Food Science & Technology, 12(5-6), 197–202. https://doi.org/10.1016/S0924-2244(01)00071-1
- Blomeyer, R., Goulding, I., Pauly, D., Sanz, A., & Stobberup, K. (2012). The role of China in World Fisheries. Study Report, European Parliament, Directorate General for Internal Policies, IP/B/PECH/IC/2011-107, 22/06, Brussels (Available on the Internet at: http//www.europarl.europa.eu/studies).
- Boyd, C. E., McNevin, A. A., & Davis, R. P. (2022). The contribution of fisheries and aquaculture to the global protein supply. Food Security, 14(3), 805–827. https://doi.org/10.1007/s12571-021-01246-9 PMID:35075379
- Brunnée, J., & Toope, S. J. (2000). International law and constructivism: Elements of an interactional theory of international law. Columbia Journal of Transnational Law, 39 (19): 19–74.
- Celebi, M. E., & Aydin, K. (Eds.). (2016). Unsupervised learning algorithms. Springer International Publishing. https://doi.org/10.1007/978-3-319-24211-8
- England, P. (1993). Problems and Prospects for the Implementation of Sustainable Development in Developing Countries: A Critique of the Brundtland Report. Griffith Law Review, 2(2), 147–160.
- FAO. (2000). The State of World Fisheries and Aquaculture, 2000 (Vol. 3). Food & Agriculture Organization of the United Nations.
- FAO. IFAD, UNICEF, WFP and WHO (2020). The State of Food Security and Nutrition in the World 2020. Transforming food systems for affordable healthy diets. Rome, FAO. https://doi.org/10.4060/ca9692en
- FAO (2016). Food and Agricultural Organization. (2016). Global per capita fish consumption rises above 20 kilograms a year. http://www.fao.org/news/story/en/item/421871/icode/
- FAO (2005). The fisheries and aquaculture sector in national adaptation programmers of action: importance, vulnerabilities and priorities. FAO Fisheries and Aquaculture Circular No. 1064.
- French, D. (2005). International law and policy of sustainable development. Manchester University Press.
- Friese, M., Wänke, M., & Plessner, H. (2006). Implicit consumer preferences and their influence on product choice. Psychology and Marketing, 23(9), 727–740. https://doi.org/10.1002/mar.20126
- Gani, A., & Prasad, B. C. (2007). Food security and human development. International Journal of Social Economics, 34(5), 310–319. https://doi.org/10.1108/03068290710741570
- Golub, S., & Varma, A. (2014). Fishing exports and economic development of least developed countries: Bangladesh, Cambodia, Comoros, Sierra Leone and Uganda. UNCTAD. Swarthmore College.
- Hastie, T., Tibshirani, R., & Friedman, J. (2009). Unsupervised Learning. In: The Elements of Statistical Learning (pp. 485–585). Springer Series in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84858-7_14
- Hillgenberg, H. (1999). A fresh look at soft law. European Journal of International Law, 10(3), 499–515. https://doi.org/10.1093/ejil/10.3.499
- Hammer, Ø., Harper, D. A., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1-9.
- Jawaid, S. T., & Waheed, A. (2017). Contribution of International Tradein Human Development of Pakistan. Global Business Review, 18(5), 1155–1177. https://doi.org/10.1177/0972150917710345
- Kotsiantis, S. B. (2013). Decision trees: A recent overview. Artificial Intelligence Review, 39(4), 261–283. https://doi.org/10.1007/s10462-011-9272-4
- Kyove, J., Streltsova, K., Odibo, U., & Cirella, G. T. (2021). Globalization impact on multinational enterprises. WORLD (Oakland, Calif.), 2(2), 216–230. https://doi.org/10.3390/world2020014
- Lawrence, R. L., & Wright, A. (2001). Rule-based classification systems using classification and regression tree (CART) analysis. Photogrammetric Engineering and Remote Sensing, 67(10), 1137–1142.
- Liaw, A., & Wiener, M. (2002). Classification and regression by random Forest. R News, 2(3), 18–22.
- Lindner, A., & Wagner, A. (2020). Agricultural Productivity, Economic Growth & Human Development in Sub-Saharan Africa: A Least Squares Dummy Variables (LSDV). Approach.
- Mazlum, Y., & Can, M. F. (2021). Analysis of Aquaculture Production Trends in OECD and Key Partner Countries. In M. L. Emek (Ed.), Understanding New Cases in Microeconomics: Markets and Industries (pp. 177–204). IKSAD Publishing House.
- Merino, G., Barange, M., Blanchard, J. L., Harle, J., Holmes, R., Allen, I., Allison, E. H., Badjeck, M. C., Dulvy, N. K., Holt, J., Jennings, S., Mullon, C., & Rodwell, L. D. (2012). Can marine fisheries and aquaculture meet fish demand from a growing human population in a changing climate? Global Environmental Change, 22(4), 795-806. https://doi.org/10.1016/j.gloenvcha.2012.03.003
- Nkurunziza, J., Tsowou, K., & Cazzaniga, S. (2017). Commodity Dependence and Human Development. African Development Review, 29(S1), 27-41. https://doi.org/10.1111/1467-8268.12231
- Noorbakhsh, F. (1998). A Modified Human Development Index. World Development, 26(3), 517-528. https://doi.org/10.1016/S0305-750X(97)10063-8
- OECD. (2010). Globalisation in Fisheries and Aquaculture: Opportunities and Challenges. OECD Publishing. https://doi.org/10.1787/9789264074927-en.
- Pata, U. K., Aydin, M., & Haouas, I. (2021). Are natural resources abundance and human development a solution for environmental pressure? Evidence from top ten countries with the largest ecological footprint. Resources Policy, 70, 101923. https://doi.org/10.1016/j.resourpol.2020.101923
- Pathak, S., Mishra, I., & Swetapadma, A. (2018). An assessment of decision tree based classification and regression algorithms. In 2018 3rd International Conference on Inventive Computation Technologies (ICICT) (pp. 92-95). IEEE. https://doi.org/10.1109/ICICT43934.2018.9034296
- Pauly, D., & Zeller, D. (2017). Comments on FAOs state of world fisheries and aquaculture (SOFIA 2016). Marine Policy, 77, 176-181. https://doi.org/10.1016/j.marpol.2017.01.006
- Ramadona, T., Septya, F., Darwis, Rengi, P., Yanti, C:W. & Darfia, N:E (2021). IOP Conf. Series: Earth and Environmental Science 934 012046 IOP Publishing https://doi.org/10.1088/1755-1315/934/1/012046.
- Ross, N. (2013). Exploring concepts of fisheries ‘dependency’and ‘community’in Scotland. Marine Policy, 37, 55-61. https://doi.org/10.1016/j.marpol.2012.04.003
- Shrestha, N. (2020). Detecting multicollinearity in regression analysis. American Journal of Applied Mathematics and Statistics, 8(2), 39-42. https://doi.org/10.12691/ajams-8-2-1
- Subasinghe, R. (2017). World aquaculture 2015: A brief overview. FAO Fisheries and Aquaculture Circular FIAA/C1140 (En) (1140), 35.
- UNDP (United Nations Development Programme). (2022). Human Development Report 2021-22: Uncertain Times, Unsettled Lives: Shaping our Future in a Transforming World. New York.
- Williams, G. (2011). Data mining with Rattle and R: The art of excavating data for knowledge discovery. Springer Science & Business Media. https://doi.org/10.1007/978-1-4419-9890-3
- World Bank. (2013). The World Bank Annual Report, Washington, DC. © World Bank. https://openknowledge. worldbank.org/handle/10986/16091 License: CC BY 3.0 IGO.
- Yarkina, N. N., & Logunova, N. N. (2022). Fisheries and Aquaculture: Implementing Sustainable Development Goals. In Arkhipov, A.G. (eds) Sustainable Fisheries and Aquaculture: Challenges and Prospects for the Blue Bioeconomy(pp. 149-160). Environmental Science and Engineering. Springer.https://doi.org/10.1007/978-3-031-08284-9_15