Have a personal or library account? Click to login
Element-based ecological and human health risk assessment in a lagoon system in a densely populated basin Cover

Element-based ecological and human health risk assessment in a lagoon system in a densely populated basin

Open Access
|Mar 2023

References

  1. Akay, A. E., Gencal, B., & Taş, İ. (2018). Determination of the Linden (Tilia L.). Forests by Using GIS and Remote Sensing. 4th International Non-Wood Forest Products Symposium 4-6 October 2018 Bursa/TURKEY E-ISBN: 978-605-9332-04-0
  2. Al-Solaimani, S. G., Abohassan, R. A., Alamri, D. A., Yang, X., Rinklebe, J., & Shaheen, S. M. (2022). Assessing the risk of toxic metals contamination and phytoremediation potential of mangrove in three coastal sites along the Red Sea. Marine Pollution Bulletin, 176, 113412. https://doi.org/doi.org/10.1016/j.marpolbul.2022.113412 PMID:35168071
  3. Alamri, D. A., Al-Solaimani, S. G., Abohassan, R. A., Rinklebe, J., & Shaheen, S. M. (2021). Assessment of water contamination by potentially toxic elements in mangrove lagoons of the Red Sea, Saudi Arabia. Environmental Geochemistry and Health, 43(11), 4819–4830. https://doi.org/doi.org/10.1007/s10653-021-00956-5 PMID:34041655
  4. Ali, M. M., Ali, M. L., Bhuyan, M. S., Islam, M. S., Rahman, M. Z., Alam, M. W., Das, M., Mustary, S., & Islam, M. N. (2022). Spatiotemporal variation and toxicity of trace metals in commercially important fish of the tidal Pasur River in Bangladesh. Environmental Science and Pollution Research International, 29(26), 40131–40145. https://doi.org/doi.org/10.1007/s11356-022-18821-y PMID:35118591
  5. Arienzo, M., Masuccio, A. A., & Ferrara, L. (2013). Evaluation of sediment contamination by heavy metals, organochlorinated pesticides, and polycyclic aromatic hydrocarbons in the Berre coastal lagoon (southeast France). Archives of Environmental Contamination and Toxicology, 65(3), 396–406. https://doi.org/doi.org/10.1007/s00244-013-9915-3 PMID:23712770
  6. Benson, N. U., Adedapo, A. E., Fred-Ahmadu, O. H., Williams, A. B., Udosen, E. D., Ayejuyo, O. O., & Olajire, A. A. (2018). A new method for assessment of sediment-associated contamination risks using multivariate statistical approach. MethodsX, 5, 268–276. https://doi.org/doi.org/10.1016/j.mex.2018.03.005 PMID:30038896
  7. Brady, J. P., Ayoko, G. A., Martens, W. N., & Goonetilleke, A. (2015). Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environmental Monitoring and Assessment, 187(5), 306. https://doi.org/doi.org/10.1007/s10661-015-4563-x PMID:25925159
  8. Cüce, H., Kalipci, E., Ustaoğlu, F., Dereli, M. A., & Türkmen, A. (2022). Integrated Spatial Distribution and Multivariate Statistical Analysis for Assessment of Ecotoxicological and Health Risks of Sediment Metal Contamination, Ömerli Dam (Istanbul, Turkey). Water, Air, and Soil Pollution, 233(6), 1–21. https://doi.org/doi.org/10.1007/s11270-022-05670-1
  9. Di Beneditto, A. P. M., Semensato, X. E. G., Carvalho, C. E. V., & Rezende, C. E. (2019). Trace metals in two commercial shrimps from southeast Brazil: Baseline records before large port activities in coastal waters. Marine Pollution Bulletin, 146, 667–670. https://doi.org/doi.org/10.1016/j.marpolbul.2019.07.028 PMID:31426206
  10. EPA. (2009). Risk Assessment Guidance for the Super Fund (RAGS): Part E. United States Environmental Protection Agency. https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part-e#background
  11. Fallahzadeh, R. A., Ghaneian, M. T., Miri, M., & Dashti, M. M. (2017). Spatial analysis and health risk assessment of heavy metals concentration in drinking water resources. Environmental Science and Pollution Research International, 24(32), 24790–24802. https://doi.org/doi.org/10.1007/s11356-017-0102-3 PMID:28913756
  12. Fural, Ş., Kükrer, S., & Cürebal, İ. (2020). Geographical information systems based ecological risk analysis of metal accumulation in sediments of İkizcetepeler Dam Lake (Turkey). Ecological Indicators, 119, 106784. https://doi.org/doi.org/10.1016/j.ecolind.2020.106784
  13. Gaudette, H. E., Flight, W. R., Toner, L., & Folger, D. W. (1974). An inexpensive titration method for the determination of organic carbon in recent sediments. Journal of Sedimentary Research, 44(1), 249–253. https://doi.org/doi.org/10.1306/74D729D7-2B21-11D7-8648000102C1865D
  14. Gomes, M. P., & Soares, A. M. (2013). Cadmium effects on mineral nutrition of the Cd-hyperaccumulator Pfaffia glomerata. Biologia, 68(2), 223–230. https://doi.org/doi.org/10.2478/s11756-013-0005-9
  15. González, I., Águila, E., & Galán, E. (2007). Partitioning, bioavailability and origin of heavy metals from the Nador Lagoon sediments (Morocco) as a basis for their management. Environmental geology, 52(8), 1581–1593. https://doi.org/doi.org/10.1007/s00254-006-0602-9
  16. GUBRETAS. (2021). N-ZN 15. Retrieved June 15, 2022 from https://www.gubretas.com.tr/urun/n-zn-15/
  17. Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/doi.org/10.1016/0043-1354(80)90143-8
  18. Hefni, H. H., Nagy, M., Azab, M. M., & Hussein, M. H. (2020). O-Acylation of chitosan by l-arginine to remove the heavy metals and total organic carbon (TOC) from wastewater. Egyptian Journal of Petroleum, 29(1), 31–38. https://doi.org/doi.org/10.1016/j.ejpe.2019.10.001
  19. Howie, M. G., Jackson, A. K., & Cristol, D. A. (2018). Spatial extent of mercury contamination in birds and their prey on the floodplain of a contaminated river. The Science of the Total Environment, 630, 1446–1452. https://doi.org/doi.org/10.1016/j.scitotenv.2018.02.272 PMID:29554763
  20. Iqbal, J., Tirmizi, S. A., & Shah, M. H. (2013). Statistical apportionment and risk assessment of selected metals in sediments from Rawal Lake (Pakistan). Environmental Monitoring and Assessment, 185(1), 729–743. https://doi.org/doi.org/10.1007/s10661-012-2588-y PMID:22392618
  21. Islam, M. S., Idris, A. M., Islam, A. R. M. T., Ali, M. M., & Rakib, M. R. J. (2021). Hydrological distribution of physicochemical parameters and heavy metals in surface water and their ecotoxicological implications in the Bay of Bengal coast of Bangladesh. Environmental Science and Pollution Research International, 28(48), 68585–68599. https://doi.org/10.1007/s11356-021-15353-9 PMID:34275081
  22. Jahan, S., & Strezov, V. (2018). Comparison of pollution indices for the assessment of heavy metals in the sediments of seaports of NSW, Australia. Marine Pollution Bulletin, 128, 295–306. https://doi.org/doi.org/10.1016/j.marpolbul.2018.01.036 PMID:29571376
  23. Jeong, H., Choi, J. Y., Lim, J., Shim, W. J., Kim, Y. O., & Ra, K. (2020). Characterization of the contribution of road deposited sediments to the contamination of the close marine environment with trace metals: Case of the port city of Busan (South Korea). Marine Pollution Bulletin, 161, 111717. https://doi.org/doi.org/10.1016/j.marpolbul.2020.111717 PMID:33039792
  24. Jiang, X., Zou, B., Feng, H., Tang, J., Tu, Y., & Zhao, X. (2019). Spatial distribution mapping of Hg contamination in subclass agricultural soils using GIS enhanced multiple linear regression. Journal of Geochemical Exploration, 196, 1–7. https://doi.org/doi.org/10.1016/j.gexplo.2018.10.002
  25. Kowalska, N., Šigut, L., Stojanović, M., Fischer, M., Kyselova, I., & Pavelka, M. (2020). Analysis of floodplain forest sensitivity to drought. Philosophical Transactions of the Royal Society B, 375(1810), 20190518. https://doi.org/doi.org/10.1098/rstb.2019.0518
  26. Kumar, S., Islam, A. R. M. T., & Hasanuzzaman, M. S.alam, R., Islam, S. M., Khan, R., … Idris, A. M. (2022). Potentially toxic elemental contamination in Wainivesi River, Fiji impacted by gold-mining activities using chemometric tools and SOM analysis. Environmental Science and Pollution Research, 29(28), 42742-42767. https://doi.org/doi.org/10.1007/s11356-022-18734-w
  27. Kükrer, S., Erginal, A. E., Şeker, S., & Karabıyıkoğlu, M. (2015). Distribution and environmental risk evaluation of heavy metal in core sediments from Lake Çıldır (NE Turkey). Environmental Monitoring and Assessment, 187(7), 1-14. https://doi.org/.10.1007/s10661-015-4685-1.
  28. Liu, X., Tian, G., Jiang, D., Zhang, C., & Kong, L. (2016). Cadmium (Cd) distribution and contamination in Chinese paddy soils on national scale. Environmental Science and Pollution Research International, 23(18), 17941–17952. https://doi.org/doi.org/10.1007/s11356-016-6968-7 PMID:27255314
  29. Long, E. R., Field, L. J., & MacDonald, D. D. (1998). Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environmental Toxicology and Chemistry: An International Journal, 17(4), 714-727. https://doi.org/doi.org/10.1002/etc.5620170428
  30. Lorenzen, C. J. (1974). Chlorophyll-Degradation Products in Sediments of Black Sea: Biology. Woods Hole Oceanographic Institution Contribution, 28, 426–428.
  31. Loska, K., & Wiechuła, D. (2003). Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere, 51(8), 723–733. https://doi.org/doi.org/10.1016/S0045-6535(03)00187-5 PMID:12668031
  32. Maanan, M., Zourarah, B., Carruesco, C., Aajjane, A., & Naud, J. (2004). The distribution of heavy metals in the Sidi Moussa lagoon sediments (Atlantic Moroccan Coast). Journal of African Earth Sciences, 39(3-5), 473–483. https://doi.org/doi.org/10.1016/j.jafrearsci.2004.07.017
  33. Macdonald, D. D., Carr, R. S., Calder, F. D., Long, E. R., & Ingersoll, C. G. (1996). Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology (London, England), 5(4), 253–278. https://doi.org/doi.org/10.1007/BF00118995 PMID:24193815
  34. MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39(1), 20–31. https://doi.org/doi.org/10.1007/s002440010075 PMID:10790498
  35. Matella, M. K., & Merenlender, A. M. (2015). Scenarios for restoring floodplain ecology given changes to river flows under climate change: Case from the San Joaquin River, California. River Research and Applications, 31(3), 280–290. https://doi.org/doi.org/10.1002/rra.2750
  36. Mohammadi, A. A., Zarei, A., Majidi, S., Ghaderpoury, A., Hashempour, Y., Saghi, M. H., Alinejad, A., Yousefi, M., Hosseingholizadeh, N., & Ghaderpoori, M. (2019). Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran. MethodsX, 6, 1642–1651. https://doi.org/doi.org/10.1016/j.mex.2019.07.017 PMID:31372352
  37. MTA. (2021). Mineral Research and Exploration Department. https://www.mta.gov.tr/en/
  38. Mutlu, E., & Aydin Uncumusaoğlu, A. (2018). Analysis of spatial and temporal water pollution patterns in Terzi Pond (Kastamonu/Turkey) by using multivariate statistical methods. Fresenius Environmental Bulletin, 27(5), 2900–2912.
  39. Ozkan, E. Y., & Buyukisik, B. (2012). Geochemical and statistical approach for assessing heavy metal accumulation in the southern Black Sea sediments. Ekoloji, 21(83), 11–24.
  40. Özkan, E. Y., Fural, Ş., Kükrer, S., & Büyükışık, H. B. (2022). Seasonal and spatial variations of ecological risk from potential toxic elements in the southern littoral zone of İzmir Inner Gulf, Turkey. Environmental Science and Pollution Research International, 29, 62669–62689. https://doi.org/doi.org/10.1007/s11356-022-19987-1 PMID:35411511
  41. Panda, D., Subramanian, V., & Panigrahy, R. (1995). Geochemical fractionation of heavy metals in Chilka Lake (east coast of India)—A tropical coastal lagoon. Environmental geology, 26(4), 199–210.
  42. Pehlivan, H. (2017). Investigation of Heavy Metal Amount in Sediments of South Marmara Sea (Kocasu Delta) Graduate School of Natural and Applied Sciences, Department of Environmental Engineering, Master’s Thesis, Hacettepe University.
  43. Pehlivan, H., Akbulut, A., & Varol, E. (2021). Investigation of heavy metal pollution in sediments of southern Marmara Sea (the Kocasu Delta). Journal of the Faculty of Engineering and Architecture of Gazi University, 36(3), 1272–1288.
  44. Pejman, A., Bidhendi, G. N., Ardestani, M., Saeedi, M., & Baghvand, A. (2015). A new index for assessing heavy metals contamination in sediments: A case study. Ecological Indicators, 58, 365–373.
  45. Raghothama, K. G. (2005). Phosphorus and plant nutrition: An overview. Phosphorus. Agriculture and the environment, 46, 353–378. https://doi.org/doi.org/10.2134/agronmonogr46.c11
  46. Sanei, H., Outridge, P. M., Oguri, K., Stern, G. A., Thamdrup, B., Wenzhöfer, F., Wang, F., & Glud, R. N. (2021). High mercury accumulation in deep-ocean hadal sediments. Scientific Reports, 11(1), 10970. https://doi.org/doi.org/10.1038/s41598-021-90459-1 PMID:34040077
  47. Schlichting, E., & Blume, H. (1966). Bodenkundliches Praktikum. Verlag Paul Parey.
  48. Sojka, M., Jaskuła, J., & Siepak, M. (2018). Heavy metals in bottom sediments of reservoirs in the lowland area of western Poland: Concentrations, distribution, sources and ecological risk. Water (Basel), 11(1), 56.
  49. Song, J., Liu, Q., & Sheng, Y. (2019). Distribution and risk assessment of trace metals in riverine surface sediments in gold mining area. Environmental Monitoring and Assessment, 191(3), 191. https://doi.org/doi.org/10.1007/s10661-019-7311-9 PMID:30810872
  50. Sun, X., Fan, D., Liu, M., Tian, Y., Pang, Y., & Liao, H. (2018). Source identification, geochemical normalization and influence factors of heavy metals in Yangtze River Estuary sediment. Environmental Pollution, 241, 938–949. https://doi.org/doi.org/10.1016/j.envpol.2018.05.050 PMID:29929160
  51. Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental geology, 39(6), 611–627. https://doi.org/doi.org/10.1007/s002540050473
  52. Tepanosyan, G., Maghakyan, N., Sahakyan, L., & Saghatelyan, A. (2017). Heavy metals pollution levels and children health risk assessment of Yerevan kindergartens soils. Ecotoxicology and Environmental Safety, 142, 257–265. https://doi.org/doi.org/10.1016/j.ecoenv.2017.04.013 PMID:28431356
  53. Thoms, M. C. (2003). Floodplain–river ecosystems: Lateral connections and the implications of human interference. Geomorphology, 56(3-4), 335–349. https://doi.org/doi.org/10.1016/S0169-555X(03)00160-0
  54. Töre, Y., Ustaoğlu, F., Tepe, Y., & Kalipci, E. (2021). Levels of toxic metals in edible fish species of the Tigris River (Turkey); threat to public health. Ecological Indicators, 123, 107361. https://doi.org/doi.org/10.1016/j.ecolind.2021.107361
  55. Turan, S. D. (1999). Mineralogical and petrographical investigations of beach deposits of Kocasu delta, Karacabey- Bursa Graduate School of Natural and Applied Sciences, Master’s Thesis, Ankara University.
  56. Uluturhan, E., Kontas, A., & Can, E. (2011). Sediment concentrations of heavy metals in the Homa Lagoon (Eastern Aegean Sea): Assessment of contamination and ecological risks. Marine Pollution Bulletin, 62(9), 1989–1997. https://doi.org/doi.org/10.1016/j.marpolbul.2011.06.019 PMID:21764081
  57. USEPA. (2005). Guidelines for Carcinogen Risk Assessment. Risk Assessment Forum U.S. Environmental Protection Agency https://www.epa.gov/sites/default/files/2013-09/documents/cancer_guidelines_final_3-25-05.pdf
  58. Ustaoğlu, F., Islam, M. S., & Tokatli, C. (2022). Ecological and probabilistic human health hazard assessment of heavy metals in Sera Lake Nature Park sediments (Trabzon, Turkey). Arabian Journal of Geosciences, 15(7), 1–15. https://doi.org/doi.org/10.1007/s12517-022-09838-1
  59. Ustaoğlu, F., Tepe, Y., & Aydin, H. (2020). Heavy metals in sediments of two nearby streams from Southeastern Black Sea coast: Contamination and ecological risk assessment. Environmental Forensics, 21(2), 145–156. https://doi.org/doi.org/10.1080/15275922.2020.1728433
  60. Wakeley, J. S., Guilfoyle, M. P., Antrobus, T. J., Fischer, R. A., Barrow, W. C., & Hamel, P. B. (2007). Ordination of breeding birds in relation to environmental gradients in three southeastern United States floodplain forests. Wetlands Ecology and Management, 15(5), 417–439. https://doi.org/doi.org/10.1007/s11273-007-9040-z
  61. Wu, Q., Bian, F., Eller, F., Wu, M., Han, G., Yu, J., & Guan, B. (2022). Pollution levels and toxicity risks of heavy metals in different reed wetland soils following channel diversion in the Yellow River Delta. Wetlands, 42(4), 1–13. https://doi.org/doi.org/110.1007/s13157-022-01548-4
  62. Yuan, Z., Taoran, S., Yan, Z., & Tao, Y. (2014). Spatial distribution and risk assessment of heavy metals in sediments from a hypertrophic plateau lake Dianchi, China. Environmental Monitoring and Assessment, 186(2), 1219–1234. https://doi.org/doi.org/10.1007/s10661-013-3451-5 PMID:24078143
  63. Zhang, G., & Bai, J. Zhau., Q., Lu, Q., Jia, j., & Wen, X. (2016). Heavy metals in wetland soils along a wetland-forming chronosequence in the Yellow River Delta of China: levels, sources and toxic risks. Ecological Indicators, 69, 331-339. https://doi.org/doi.org/10.1016/j.ecolind.2016.04.042
DOI: https://doi.org/10.26881/oahs-2023.1.01 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 1 - 19
Submitted on: Sep 5, 2022
Accepted on: Nov 21, 2022
Published on: Mar 18, 2023
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Dilek Aykir, Şakir Fural, Serkan Kükrer, Yunus Emre Mutlu, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.