Have a personal or library account? Click to login
Comparison Between Active Learning Method and Support Vector Machine for Runoff Modeling Cover

Comparison Between Active Learning Method and Support Vector Machine for Runoff Modeling

Open Access
|Mar 2012

References

  1. ABBASS H. A., SARKER R. A., and NEWTON C. S., 2002: Data mining: a heuristic approach. Idea Group Publishing.10.4018/978-1-93070-825-9
  2. ANVARI TAFTI S., 2008: Upgrading intelligent models for streamflow forecasting using distributed climatic data and snow cover. MS thesis, Faculty of Agriculture, Tarbiat Modares University, Iran.
  3. ASEFA T., KEMBLOWSKI M. W., MCKEE M., and KHALIL A., 2006: Multi-time scale stream flow prediction: The support vector machines approach. J. Hydrol., 318, 7-16.10.1016/j.jhydrol.2005.06.001
  4. BAGHERI SHOURAKI S. and HONDA N., 1997: A new method for establishing and saving fuzzy membership functions. Proc., Int. 13th Fuzzy Symposium, 4-6 June, Toyama, Japan, pp. 91-94.
  5. BAGHERI SHOURAKI S., and HONDA N., 1999: Recursive fuzzy modeling based on fuzzy interpolation. J. Advanced Computational Intelligence, 3, 114-125.10.20965/jaciii.1999.p0114
  6. BATTITI R., 1994: Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neural Networks, 5, 4, 537-550.10.1109/72.29822418267827
  7. BEHZAD M., ASGHARI K., EAZI M., PALHANG M., 2009: Generalization performance of support vector machines and neural networks in runoff modeling, Expert Systems with Applications, 36, 7624-7629.10.1016/j.eswa.2008.09.053
  8. BOWDEN G. J., MAIER H. R., and DANDY G. C., 2002: Optimal division of data for neural network models in water resources applications. Water Resour. Res., 38, 2, 1010, doi: 10.1029/2001WR000266. (http://www.agu.org/pubs/crossref/2002/2001WR000266.shtml) http://www.agu.org/pubs/crossref/2002/2001WR000266.shtml
  9. BOWDEN G. J. DANDY G. C. & MAIER, H. R., 2005a: Input determination for neural network models in water resources applications, Part 1-background and methodology. J. Hydrol., 301, 75-92.10.1016/j.jhydrol.2004.06.021
  10. BOWDEN, G. J. DANDY G. C. & MAIER, H. R. (2005b): Input determination for neural network models in water resources applications, Part 2. Case study: forecasting salinity in a river. J. Hydrol., 301, 93-107.10.1016/j.jhydrol.2004.06.020
  11. BOSER B. E., GUYON I. M., VAPNIK V. N., 1992: A training algorithm for optimal margin classifiers. In D. Haussler, editor, 5th Annual ACM Workshop on COLT, 144-152, Pittsburgh, PA, ACM Press.10.1145/130385.130401
  12. CHAMBERS J. M., CLEVELAND W. S., KLEINER B., TUKEY P. A., 1983: Graphical methods for data analysis. Wadworth, Belmont, California, pp. 395.
  13. CHANG C. C and LIN C. J., 2011: LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1-27:27. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm http://www.csie.ntu.edu.tw/~cjlin/libsvm10.1145/1961189.1961199
  14. CHANG F. J. and CHANG Y. T., 2006: Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Adv. Water Res, 29, 1-10.10.1016/j.advwatres.2005.04.015
  15. CHANG F. J. and CHEN Y. C., 2001: Counter propagation fuzzy-neural network modeling approach to real time streamflow prediction. J. Hydrol., 245, 153-164.10.1016/S0022-1694(01)00350-X
  16. CHAU K. W., WU C. L. and LI Y. S., 2005: Comparison of several flood forecasting models in Yangtze River. J. Hydrologic Engng., ASCE, 10, 6, 485-491.10.1061/(ASCE)1084-0699(2005)10:6(485)
  17. CHEN S. H., LIN Y. H., CHANG L. C., and CHANG F. J., 2006: The strategy of building a flood forecast model by neuro-fuzzy network. Hydrol. Process., 20, 1525-1540.10.1002/hyp.5942
  18. CHENG C. T., OU C. P. and CHAU K. W., 2002: Combining a fuzzy optimal model with a genetic algorithm to solve multiobjective rainfall-runoff model calibration. J. Hydrol., 268, 72-86.10.1016/S0022-1694(02)00122-1
  19. DIBIKE Y. B., VELICKOV S., SOLOMATINE D., and ABBOTT M. B., 2001: Model Induction with support vector machines: Introduction and Application. J. Computing in Civil Engng., 15, 3, 208-216.10.1061/(ASCE)0887-3801(2001)15:3(208)
  20. DUAN D., FERMINI B., and NATTELI S., 1992: Sustained Outward Current Observed after Ito1 Inactivation in Rabbit Atrial Myocytes Is a Novel Cl- current'. Am. J. Physiol., 263, H1967-1971.10.1152/ajpheart.1992.263.6.H19671481920
  21. FAUSSET L., 1994: Fundamentals of neural networks: Architectures, algorithms and applications. Prentice Hall, 461p.
  22. FERNANDO T. M. K. G., MAIER H. R., DANDY G. C., 2009: Selection of input variables for data driven models: An average shifted histogram partial mutual information estimator approach. J. Hydrol., 367, 3-4, 165-176.10.1016/j.jhydrol.2008.10.019
  23. FIRAT M., and GUNGOR M., 2006: River flow estimation using adaptive neuro fuzzy inference system. Math. Compute. Simulate., 75, 3-4, 87-96.10.1016/j.matcom.2006.09.003
  24. FIRAT M., 2008: Comparison of artificial intelligence techniques for river flow forecasting. Hydrol. Earth Syst. Sci., 12, 123-139.10.5194/hess-12-123-2008
  25. HSU K., GUPTA H. V., and SOROOSHIAN S., 1995: Artificial neural network modeling of rainfall-runoff process. Water Resour. Res., 31, 2517-2530.10.1029/95WR01955
  26. JAIN S. K., DAS D., and SRIVASTAVA D. K., 1999: Application of ANN for reservoir inflow prediction and operation. J. Water Resources Planning and Management, ASCE, 125, 263-271.10.1061/(ASCE)0733-9496(1999)125:5(263)
  27. KISI O., 2005: Daily river flow forecasting using artificial neural networks and auto-regressive models. Turkish J. Eng. Env. Sci., 29, 9-20.
  28. LIN J. Y., CHENG C. T. and CHAU K. W., 2006: Using support vector machines for long-term discharge prediction. Hydrological Sciences J., 51, 4, 599-612.10.1623/hysj.51.4.599
  29. LIONG S. Y., LIM W. H., KOJIRI T., and HORI H., 2006: Advance flood forecasting for flood stricken Bangladesh with a fuzzy reasoning method. Hydrol. Process, 14, 431-448.10.1002/(SICI)1099-1085(20000228)14:3<;431::AID-HYP947>3.0.CO;2-0
  30. LIU H., SUN J., LIU L. and ZHANG H., 2009: Feature selection with dynamic mutual information. Pattern Recognition, 42, 7, 1330-1339.10.1016/j.patcog.2008.10.028
  31. MAHABIR C., HICKS F. E., and FAYEK A. R., 2000: Application of fuzzy logic to the seasonal runoff. Hydrol. Process, 17, 3749-3762.10.1002/hyp.1359
  32. MAIER H. R. AND DANDY G. C., 1998: Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environmental Modeling and Software, 15, 101-124.10.1016/S1364-8152(99)00007-9
  33. MAMDANI E. A., 1976: Advances in the linguistic synthesis of fuzzy controllers. Int. J. Man-Machine Studies, 8, 669-678.10.1016/S0020-7373(76)80028-4
  34. MAMDANI E. A. and ASSILIAN S., 1975: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Machine Studies, 7, 1-3.10.1016/S0020-7373(75)80002-2
  35. MANNING, C. D., RAGHAVAN P. and SCHÜTZE H., 2008: Introduction to Information Retrieval. Cambridge University Press.10.1017/CBO9780511809071
  36. MARKUS M., 1997: Application of neural networks in streamflow forecasting. PhD thesis, Department of Civil Engineering. Colorado State University. Fort Collins. Colorado.
  37. MAY R. J., DANDY G. C., MAIER H. R., and NIXON J. B., 2008a: Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems. Environmental Modeling and Software, 23, 1289-1299.10.1016/j.envsoft.2008.03.008
  38. MAY R. J., MAIER H. R., DANDY G. C., and FERNANDO T. G., 2008b: Non-linear variable selection for artificial neural networks using partial mutual information. Environmental Modeling and Software, 23, 1312-1326.10.1016/j.envsoft.2008.03.007
  39. NAYAK P. C., SUDHEER K. P. and RAMASASTRI K. S., 2004a: Fuzzy computing based rainfall-runoff model for real time flood forecasting. Hydrol. Process, 17, 3749-3762.
  40. PULIDO-CALVO I. and PORTELA, M. M., 2007: Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds. J. Hydrol., 332, 1-15.10.1016/j.jhydrol.2006.06.015
  41. SAAD M., BIGRAS P., TURGEON A., and DUQUETTE R., 1996: Fuzzy learning decomposition for the scheduling of hydroelectric power systems. Water Resour. Res., 32, 179-186.10.1029/95WR02971
  42. SEN Z. and ALTUNKAYNAK A., 2006: A comparative fuzzy logic approach to runoff coefficient and runoff estimation. Hydrol. Process, 20, 1993-2009.10.1002/hyp.5992
  43. SHAMSELDIN A. Y., 1997: Application of a neural network technique to rainfall-runoff modeling. J. Hydrol., 199, 272-294.10.1016/S0022-1694(96)03330-6
  44. SIVAKUMAR B., JAYAWARDENA A. W. and FERNANDO T. M. K. G., 2002: River flow forecasting: Use of phase space reconstruction and artificial neural networks approaches. J. Hydrol., 265, 225-245.10.1016/S0022-1694(02)00112-9
  45. SMITH J., and ELI R. N., 1995: Neural network models of rainfall-runoff process. J. Water Resources Planning and Management, 499-508.10.1061/(ASCE)0733-9496(1995)121:6(499)
  46. SMOLA A. J., SCHLKOPF B., 2004: A tutorial on support vector regression. Statistics and Computing, 14, 199-222.10.1023/B:STCO.0000035301.49549.88
  47. SOROOSHIAN S., DAUN Q., and GUPTA V. K., 1993: Calibration of Rainfall-Runoff Models; Application of Global Optimization to the Sacramento Soil Moisture Accounting Model. Water Resour. Res., 29, 1185-1194.10.1029/92WR02617
  48. SUGENO M,. and YASUKAWA T., 1993: A fuzzy-logic based approach to qualitative modeling. IEEE Transactions on Fuzzy Systems, 1, 7-31.10.1109/TFUZZ.1993.390281
  49. TAHERI SHAHRAIYNI H., 2007: Extraction of water quality parameters using the satellite data and inverse modeling of radiative transfer equation by Active Learning Method. PhD Thesis, School of Civil Engineering, Sharif University of Technology, Iran.
  50. TAHERI SHAHRAIYNI H., BAGHERI SHOURAKI S., FELL F., SCHAALE M., FISCHER J., TAVAKOLI A., PREUSKER R., TAJRISHY M., VATANDOUST M., and KHODAPARAST H., 2009: Application of the active learning method to the retrieval of pigment from spectral remote sensing reflectance data. Int. J Remote Sensing, 30, 1045-1065.10.1080/01431160802448927
  51. TAHERI SHAHRAIYNI H., 2010: Fuzzy modeling by active learning method. Advanced Technologies, 1st Edn., In-Tech Publisher.10.5772/9431
  52. TAKAGI T., and SUGENO M., 1985: Fuzzy identification of systems and its applications to modeling and control., IEEE Transactions on Systems. Man. and Cybernetics, SMC15, 116-132.10.1109/TSMC.1985.6313399
  53. TAN P. N., STEINBACH M. and KUMAR V., 2006: Introduction to data mining. Addison Wesley.
  54. TOKAR A. S. and JOHNSON P. A., 1999: Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng., ASCE, 4, 232-239.10.1061/(ASCE)1084-0699(1999)4:3(232)
  55. TAYFUR, G. and SINGH, V. P., 2006: ANN and Fuzzy Logic Models for Simulating Event-Based Rainfall-Runoff. J. Hydraul. Engng, 132, 12, 1321-1330.10.1061/(ASCE)0733-9429(2006)132:12(1321)
  56. US ARMY CORPS of ENGINEERS (USACE)., 2000: HECHMS Technical Reference Manual. Davis, C. A http://www.hec.usace.army.mil/
  57. VAPNIK V. N., CORTES C., 1995: Support vector networks. Machine Learning, 20, 273-297.10.1007/BF00994018
  58. VAPNIK V. N., 1998: Statistical Learning Theory. Wiley, New York.
  59. WANG W., 2006: Stochasticity, nonlinearity and forecasting of streamflow processes. PhD Thesis, Hohai University.
  60. WANG W. C., CHAU K. W., CHENG C. T. and QIU L., 2009: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol., 374, 3-4, 294-306.10.1016/j.jhydrol.2009.06.019
  61. WU C. L., CHAU K. W. and LI Y. S., 2009: Predicting monthly streamflow using data-driven models coupled with datapreprocessing techniques. Water Resour. Res., 45, W08432, doi:10.1029/2007WR006737.10.1029/2007WR006737
  62. YAPO P., GUPTA V. K., and SOROOSHIAN S., 1996: Calibration of Conceptual Rainfall-Runoff Models: Sensitivity to Calibration Data. J. Hydrol., 181, 23-48.10.1016/0022-1694(95)02918-4
  63. YU P. S., CHEN S. T., and CHANG I. F., 2006: Support vector regression for real-time flood stage forecasting. J. Hydrol., 328, 704-716.10.1016/j.jhydrol.2006.01.021
  64. ZADEH L. A., 1965: Fuzzy sets. Information and Control. 338-353.10.1016/S0019-9958(65)90241-X
  65. ZEALAND C. M., BURN D. H., and SIMONOVIC S. P., 1999: Short-term streamflow forecasting using artificial neural networks. J. Hydrol., 214, 32-48.10.1016/S0022-1694(98)00242-X
  66. ZOUNEMAT-KERMANI M., TESHNEHLAB M., 2007: Using adaptive neuro-fuzzy inference system for hydrological time series prediction. Appl. Soft Comput. J., doi:10.1016/j.asoc.2007.07.011.10.1016/j.asoc.2007.07.011
DOI: https://doi.org/10.2478/v10098-012-0002-7 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 16 - 32
Published on: Mar 6, 2012
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2012 Hamid Shahraiyni, Mohammad Ghafouri, Saeed Shouraki, Bahram Saghafian, Mohsen Nasseri, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons License.

Volume 60 (2012): Issue 1 (March 2012)