Have a personal or library account? Click to login
Algebraic Frameworks for Measurement in the Natural Sciences Cover

Algebraic Frameworks for Measurement in the Natural Sciences

By: Zoltan Domotor  
Open Access
|Dec 2012

References

  1. [1] Černý, M., Rada, M. (2011). On the possibilistic approach to linear regression with rounded or interval-censored data. MeasurementScience Review 11 (2), 34-40.10.2478/v10048-011-0007-0
  2. [2] Domotor, Z., Batitsky, V. (2008). The analytic versus representational theory of measurement. Measurement Science Review 8, 129-146.10.2478/v10048-008-0031-x
  3. [3] Domotor, Z., Batitsky, V. (2009). Measurement, information channels,and discretization: Exploring the links. MeasurementScience Review 9 (6), 134-161.10.2478/v10048-009-0026-2
  4. [4] Domotor, Z., Batitsky, V. (2010). An algebraic-analytic framework for measurement theory. Measurement Journal 43 (9), 1142-1164.10.1016/j.measurement.2010.05.006
  5. [5] Hegeduš, H., Mostarac, P., Malaric, R. (2011). Comparison of RMS value measurement algorithms of non-coherent sampled signals. Measurement Science Review 11 (3), 79-84.10.2478/v10048-011-0019-9
  6. [6] Kakihara, Y. (1999). Abstract methods in information theory. World Scientific, Singapore.10.1142/3978
  7. [7] Kosarevsky, S.V., Latypov, V.N. (2012). Practical procedure for position tolerance uncertainty determination via Monte-Carlo error propagation. Measurement Science Review 12 (1), 1-7.10.2478/v10048-012-0001-1
  8. [8] Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A. (1971). Foundations of measurement. Volume I: Additive and polynomialrepresentations. Academic Press, New York.
  9. [9] Morawski, R.Z., (1994). Unified approach to measurand reconstruction. IEEE Transaction on Instrumentation and Measurement 43, 226-231.10.1109/19.293425
  10. [10] Pratt, V.R. (1999). Chu spaces: Notes for school on category theory and applications. Technical report,University of Coimbra, Coimbra, Portugal. Available at http://boole.stanford.edu/pub/coimbra.pdf
  11. [11] Sinha, V.P. (2010). Symmetries and groups in signal processing:An introduction. Springer, New York.
  12. [12] Takesaki, M. (2002). Theory of operator algebra. Volume I. Springer, New York.
Language: English
Page range: 213 - 233
Published on: Dec 15, 2012
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2012 Zoltan Domotor, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons License.