Have a personal or library account? Click to login
A new method for the prediction of laser cut surface topography Cover

A new method for the prediction of laser cut surface topography

Open Access
|Oct 2012

References

  1. [1] Yilbaş, B.S. (1996). Experimental investigation into CO2 laser cutting parameters. Processing Technology, 10.1016/0924-0136(95)02094-2
  2. [2] Riveiro, A., et al. (2010). Parametric investigation of CO2 laser cutting of 2024-T3 alloy. Material Processing Technology10.1016/j.jmatprotec.2010.02.024
  3. [3] Scintilla, L.D., Tricarico, L. (2012). Estimating cutting front temperature difference in disk and CO2 laser beam fusion cutting. Technology10.1117/12.909941
  4. [4] Eltawahni, H.A., Hagino, M., Benyounis, K.Y., Inoue, T., Olabi, A.G. (2012). Effect of CO2 laser cutting process parameters on edge quality and operating cost of AISI316L. 1068-1082.10.1016/j.optlastec.2011.10.008
  5. [5] Sharma, A., Yadava V. (2012). Modelling and optimization of cut quality during pulsed Nd:YAG laser cutting of thin Al-alloy sheet for straight profile. 10.1016/j.optlastec.2011.06.012
  6. [6] Cekic, A., Kulenovic, M., Begic, Dj. (2008). Roughness as parameter of cut quality during CO2 laser cutting of high alloy steels for the special purpose. In DAAAM Symposium Austria: DAAAM International, 225-226.
  7. [7] Jena, D.P., Kumar, R. (2011). Implementation of wavelet denoising and image morphology on welding image for estimating HAZ and welding defects. Measurement Science Review10.2478/v10048-011-0020-3
  8. [8] Ghany, K.A., Newishy, M. (2005). Cutting of 1.2 mm thick austenitic stainless steel sheet using pulsed and CW Nd: YAG laser. Technology,
  9. [9] Di Pietro, P., Yao, Y.L. (1994). An investigation into characterizing and optimizing laser cutting quality. International Journal of Machine Tools andManufacture10.1016/0890-6955(94)90103-1
  10. [10] Valíček, J., Harničárová, M., Čep, R., Rokosz, K., Łukianowicz, C., Kozak, D., Zeleňák, M., Koštial, P. (2012). Surface quality control of materials being cut by laser with respect to corrosion resistance. and Diffusion Forum10.4028/www.scientific.net/DDF.326-328.324
  11. [11] Neslusan, M., Mrkvica, I., Čep, R., Kozak, D., Konderla, R. (2011). Deformations after heat treatment and their influence on cutting process. Vjesnik (Technical Gazette),
  12. [12] Łukianowicz, Cz., Karpiński, T. (2001). Optical system for measurement of surface form and roughness. 151-154.
  13. [13] Domotor, Z., Batitsky, V. (2009). The analytic versus representational theory of measurement: A philosophy of science perspective 8 (6), 129-146.10.2478/v10048-008-0031-x
  14. [14] Hashish, M. (1984). A model study of metal of cutting with abrasive water jet. Materials and Technology10.1115/1.3225682
  15. [15] Hashish, M. (1992). A modeling study of jet cutting surface finish.
  16. [16] Hashish, M. (1988). Visualization of the abrasivewaterjet cutting process. (2), 159-169.
  17. [17] Hassan, I.A., Chen, C., Kovacevic, R. (2004). Online monitoring of depth of cut in AWJ cutting. International Journal of Machine Tools &Manufacture, 10.1016/j.ijmachtools.2003.12.002
  18. [18] Kovacevic, R., Mohan, R., Zhang, Y.M. (1995). Cutting force dynamics as a tool for surface profile monitoring. (3), 340-350.10.1115/1.2804339
  19. [19] Hrabčáková, I. (2003). Simulation and optimization ofa quality and reliability of automated control ofproduction processes in engineering applications inthe technology of laser cutting Prešov.
Language: English
Page range: 195 - 204
Published on: Oct 21, 2012
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2012 M. Harničárová, J. Valíček, M. Kušnerová, R. Grznárik, J. Petrů, L. Čepová, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons License.