Have a personal or library account? Click to login
Performance Evaluation of Neural Network Based Pulse-Echo Weld Defect Classifiers Cover

Performance Evaluation of Neural Network Based Pulse-Echo Weld Defect Classifiers

By: S. Seyedtabaii  
Open Access
|Oct 2012

References

  1. [1] Hayes, C. (1998). The ABC’s of nondestructive weld examination. NDTnet, 3 (6), http://www.ndt.net/article/ 0698/hayes/ hayes.htm.
  2. [2] Mirapeix, J., Garcia-Allende, P.B., Cobo, A., Conde O.M., Lopez-Higuera, J.M. (2007). Real-time arcwelding defect detection and classification with principal component analysis and artificial neural networks. NDT & E International, 40, 315-323. 10.1016/j.ndteint.2006.12.001
  3. [3] American Society for Nondestructive Testing, Inc. (1991). TheNTDHandbook (2nd ed.). Columbus, OH: ASNT.
  4. [4] Veiga, J.L.B.C., de Carvalho, A.A., da Silva, I.C., Rebello, J.M.A. (2005). The use of artificial neural network in the classification of pulse-echo and TOFD ultra-sonic signals. JournaloftheBrazilianSocietyofMechanicalSciencesandEngineering, 27 (4), 394-398. 10.1590/S1678-58782005000400007
  5. [5] Ogilvy, J.A. (1993). Model for predicting ultrasonic pulse-echo probability of detection. NDT & E International, 26 (1), 19-29. 10.1016/0963-8695(93)90160-V
  6. [6] Blitz, J. (1967). FundamentalsofUltrasonics (2nd ed.). London: Butterworth.
  7. [7] Drai, R., Khelil, M., Benchaala, A. (2002). Time frequency and wavelet transform applied to selected problems in ultrasonics NDE. NDT & E International, 35, 567-572. 10.1016/S0963-8695(02)00041-5
  8. [8] Haykin, S. (1999). NeuralNetworks: AComprehensiveFoundation. Englewood Cliffs, NJ: Prentice-Hall.
  9. [9] Margrave, F.W., Rigas, K., Bradley, D.A., Barrowcliffe, P. (1999). The use of neural networks in ultrasonic flaw detection. Measurement, 25, 143-154. 10.1016/S0263-2241(98)00075-X
  10. [10] Meksen, T.M., Boudraa, B., Boudraa, M. (2004). Defects clustering using Kohonen networks during ultrasonic inspection. IAENGInternationalJournalofComputerScience, 36 (3).
  11. [11] Mathers, G. (ed.) (2002). Weld defects and quality control. In WeldingofAluminiumandItsAlloys. Woodhead Publishing, 199-215.
  12. [12] Mallat, S. (1998). AWaveletTourofSignalProcessing. New York: Academic.
  13. [13] Naga Rajesh, A., Chandralingam, S., Anjaneyulu, T., Satyanarayana, K. (2012). Denoising EOG signal using stationary wavelet transform. MeasurementScienceReview, 12 (2), 46-51.
  14. [14] Kohonen, T. (2000). SelfOrganizingMap (3rd ed.). Springer.
  15. [15] Bardal, E., Drugli, J.M. (2004). Corrosion detection and diagnosis. In Rawlings, R.D. (ed.) MaterialsScienceandEngineering, Vol. 3. Encyclopedia of Life Support Systems (EOLSS).
  16. [16] Karimi, A., Seyedtabaii, S. (2011). The use of SOM and MLP neural networks in the classification of pulse-echo ultra-sonic signals. InternationalReviewonModellingandSimulations, 4 (2), 648-652.
  17. [17] Bmeh, S.F., Being, N.K. (1986). A physical approach to the automated ultrasonic characterisation of buried weld defects in ferritic steel. NDTInternational, 19 (3), 145-153.
  18. [18] Stepinski, T., Lingvall, F. (2000). Automatic defect characterisation in ultrasonic NDT. In 15thWorldConferenceonNon-DestructiveTesting, 15-21 October 2000.
  19. [19] Gil Pita, R., Vicen, R., Rosa, M., Jarabo, M.P., Vera, P., Curpian, J. (2004). Ultrasonic flaw detection using radial basis function networks (RBFNs). Ultrasonics, 42, 361-365. 10.1016/j.ultras.2003.11.01815047312
  20. [20] Lee, K., Estivill-Castro, V. (2003). Classification of ultrasonic shaft inspection data using discrete wavelet transform. In ProceedingsoftheIASTEDInternationalConferencesonArtificialIntelligenceandApplication, 8-10 September 2003. Calgary: Acta Press, 673-678.
  21. [21] Phinyomark, A., Limsakul, C., Phukpattaranont, P. (2011). Application of wavelet analysis in EMG feature extraction for pattern classification. MeasurementScienceReview, 11 (2), 45-52. 10.2478/v10048-011-0009-y
  22. [22] Legendre, S., Massicotte, D., Goyette, J., Bose, T.K. (2001). Neural classification of lamb wave ultrasonic weld testing signals using wavelet coefficients. IEEETransactionsonInstrumentationandMeasurement, 50 (3), 672-678. 10.1109/19.930439
Language: English
Page range: 168 - 174
Published on: Oct 21, 2012
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2012 S. Seyedtabaii, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons License.