Have a personal or library account? Click to login
Soft-tissues Image Processing: Comparison of Traditional Segmentation Methods with 2D active Contour Methods Cover

Soft-tissues Image Processing: Comparison of Traditional Segmentation Methods with 2D active Contour Methods

Open Access
|Aug 2012

References

  1. Frollo, I., Andris, P., Přibil, J., Vojtíšek, L., Dermek, T., Valkovič, L., (2010). Measurement and imaging of planar electromagnetic phantoms based on NMR imaging methods. Measurement Science Review, 10 (3), 97-101.10.2478/v10048-010-0013-7
  2. Jan, J. (2006). Medical Image Processing, Reconstruction and Restoration : Concepts and Methods. CRC Press.
  3. Hlavac, V., Sonka, M. (1992). Image Vision. Praha: Grada.
  4. Valkovič, L., Windiwschberger, C. (2010). Method for geometric distortion correction in fMRI based on three echoplanar phase images. Measurement Science Review, 10 (4), 116-119.
  5. Marcoň, P., Bartušek, K., Kořínek, R., Dokoupil, Z. (2011). Correction of artifacts in diffusion-weighted MR images. In 34th International Conference on Telecommunications and Signal Processing, 391-397.10.1109/TSP.2011.6043703
  6. Deng, X., Du, G. (2008). Editorial: 3D segmentation in the clinic: A grand challenge II - liver tumor segmentation.http://grand-challenge2008.bigr.nl/proceedings/liver/articles.html
  7. Seo, K. S., Chung, T. W. (2005). Automatic boundary tumor segmentation of a liver. In Computational Science and Its Applicationas - ICCSA 2005, LNCS 3483. Springer, 836-842.10.1007/11424925_87
  8. LI, B. N., Chui, Ch.K., Ong, S. H., Chang, S. (2009). In IFMBE Proceedings (Integrating FCM and Level Sets for Liver Tumor Segmentation - ICBME 2008), Vol. 23, 202-205.
  9. Smeets, D., Loeckx, D., Stijnen, B., Dobbelaer, B., Vandeurmeulen, D., Suetens, P. (2010). Semiautomatic level set segmentation of liver tumors combining a spiral-scanning technique with supervised fuzzy pixel classification. Medical Image Analysis, 14, 13-20.10.1016/j.media.2009.09.00219828356
  10. Stawiaski, J., Decenciere, E., Bidault, F. (2008). Interactive liver tumor segmentation using graph-cuts and watershed. MiDAS Journal (MICCAI 2008 Workshop : Grand Challenge Liver Tumor Segmentation). http://www.insight-journal.org/browse/journal/45 http://www.insight-journal.org/browse/journal/4510.54294/5clvrb
  11. Abdel-Massieh, N. H., Hadhoud, M. M., Amin, K. M. (2010). Automatic liver tumor segmentation from CT scans with knowledge-based constraints. In 5th Cairo International Biomedical Engineering Conference.10.1109/CIBEC.2010.5716054
  12. Qi, Y. et al. (2008). Semi-automatic segmentation of liver tumors from CT scans using Bayesian rule-based 3D region growing. MiDAS Journal (MICCAI 2008 Workshop : Grand Challenge Liver Tumor Segmentation). http://www.insight-journal.org/browse/journal/45 http://www.insight-journal.org/browse/journal/4510.54294/rofibw
  13. Häme, Y., Pollari, M. (2011). Semi-automatic liver tumor segmentation with hidden Markov measure field model and non-parametric distribution estimation. Medical Image Analysis, 16 (1), 140-149.
  14. Mikulka, J., Gescheidtova, E., Bartusek, K. (2010). Processing of MR slices of human liver for volumetry. In Proceedings of PIERS 2010, 22-26 March 2010. Xi'an, China, 202-204.
  15. Smirg, O., Liberda, O., Sprlakova, A., Smekal, Z. (2011). Creating a 3D model of the temporomandibular joint disc on the basis of segmented MRI slices. In 34th International Conference on Telecommunications and Signal Processing - TSP 2011, 18-20 August 2011. Budapest, Hungary, 369-375.10.1109/TSP.2011.6043707
  16. Smekal, Z., Liberda, O., Bartusek, K., Mikulka, J. (2009). Data processing in studying the temporomandibular joint, using MR imaging and sonographic techniques. In 16th International Conference on Digital Signal Processing - DSP 2009. Santorini, Greece, 100-106.
  17. Osher, S., Fedkiw, R. (2003). Level Set Method and Dynamic Implicit Surfaces. New York: Springer-Verlag.10.1007/b98879
  18. Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition. Academic Press.
  19. Bushberg, J. T. et al. (2006). The Essential Physics of Medical Imaging. Philadelphia: Lippincott Williams & Wilkins.
  20. Rabbani, H. (2011). Statistical modeling of low SNR magnetic resonance images in wavelet domain using Laplacian prior and two-sided Rayleigh noise for visual quality improvement. In Measurement Science Review, 11 (4), 125-130.10.2478/v10048-011-0023-0
  21. Peli, E. (1990). Contrast in complex images. Journal of the Optical Society of America, 7 (10), 2032-2040.10.1364/JOSAA.7.002032
  22. Michelson, A. A. (1995). Studies in Optics. Dover Publications.
  23. Xiaomei, S. et al. (2004). Automated region detection based on the contrast-to-noise ratio in near-infrared tomography. Applied Optics, 43 (5), 1053-1062.
  24. Aubert, G., Kornprobst, P. (2006). Mathematical Problems in Image Processing : Partial Differential Equations and the Calculus of Variations (2nd ed.) New York: Springer.10.1007/978-0-387-44588-5
  25. Li, Ch., Xu, Ch., Gui, Ch., Fox, M. D. (2005). Level set evolution without re-initialization: A new variational formulation. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition - CVPR'05. IEEE, 430-436.
  26. Osher, S., Sethian, J. A. (1988). Fronts propagation with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79, 12-49.10.1016/0021-9991(88)90002-2
  27. Vese, L. A., Chan, T. F. (2002). A multiphase level set framework for image segmentation using the Mumford and Shah Model. International Journal of Computer Vision, 50 (3), 271-293.10.1023/A:1020874308076
  28. Lankton, S., Tannenbaum, A. (2008). Localizing region-based active contours. IEEE Transactions on Image Processing, 17 (11), 2029-2039.10.1109/TIP.2008.2004611279611218854247
  29. Shi, Y., Karl, W. C. (2008). A real-time algorithm for the approximation of level-set-based curve evolution. IEEE Transactions on Image Processing, 17 (5), 645-655.
  30. Xu, C., Yezzi, A., Prince, J. (2000). On the relationship between parametric and geometric active contours. In 34th Asilomar Conference on Signals, Systems and Computers, 483-489.
  31. Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, W. E., Willsky, A. (2003). A shape-based approach to the segmentation of medical imagery using level sets. IEEE Transactions on Medical Imaging, 22 (2), 137-154.10.1109/TMI.2002.80835512715991
Language: English
Page range: 153 - 161
Published on: Aug 13, 2012
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2012 J. Mikulka, E. Gescheidtova, K. Bartusek, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons License.

Volume 12 (2012): Issue 4 (August 2012)