Have a personal or library account? Click to login
Application of Linear Discriminant Analysis in Dimensionality Reduction for Hand Motion Classification Cover

Application of Linear Discriminant Analysis in Dimensionality Reduction for Hand Motion Classification

Open Access
|May 2012

References

  1. Merletti, R., Hermens, H. (2004). Detection and conditioning of the surface EMG signal. In Merletti R., Parker, P. (eds.) Electromyography: Physiology, Engineering, and Noninvasive Applications. New Jersey: John Wiley & Sons, 107-132.10.1002/0471678384.ch5
  2. Oskoei, M.A., Hu, H. (2007). Myoelectric control systems—A survey. Biomed. Signal Process. Control, 2 (4), 275-294.10.1016/j.bspc.2007.07.009
  3. Parker, P.A., Englehart, K.B., Hudgins, B.S. (2004). Control of powered upper limb prostheses. In Merletti, R., Parker, P. (eds.) Electromyography: Physiology, Engineering, and Noninvasive Applications. New Jersey: John Wiley & Sons, 453-476.10.1002/0471678384.ch18
  4. Phinyomark, A., Phukpattaranont, P., Limsakul, C. (2011). A review of control methods for electric power wheelchairs based on electromyography (EMG) signals with special emphasis on pattern recognition. IETE Technical Review, 28 (4), 316-326.10.4103/0256-4602.83552
  5. Jacobson, S.C., Knutti, D.F., Johnson, R.T., Shears, H.H. (1982). Development of the Utah artificial arm. IEEE Trans. Biomed. Eng., 29 (4), 249-269.10.1109/TBME.1982.325033
  6. Hudgins, B., Parker, P., Scott, R.N. (1993). A new strategy for multifunction myoelectric control. IEEE Trans. Biomed. Eng., 40 (1), 82-94.10.1109/10.204774
  7. Light, C.M., Chappell, P.H. (2000). Development of a lightweight and adaptable multiple-axis hand prosthesis. Med. Eng. Phys., 22 (10), 679-684.10.1016/S1350-4533(01)00017-0
  8. Englehart, K., Hudgin, B., Parker, P.A., Stevenson, M. (1999). Classification of the myoelectric signal using time-frequency based representations. Med. Eng. Phys., 21 (6-7), 431-438.10.1016/S1350-4533(99)00066-1
  9. Khezri, M., Jahed, M. (2009). An exploratory study to design a novel hand movement identification system. Comput. Biol. Med., 39 (5), 433-442.10.1016/j.compbiomed.2009.02.00119342012
  10. Artemiadis, P.K., Kyriakopoulos, K.J. (2010). EMG-based control of a robot arm using low-dimensional embeddings. IEEE Trans. Robotics, 26 (2), 393-398.10.1109/TRO.2009.2039378
  11. Rivera-Alvidrez, Z., Kalmar, R.S., Ryu, S.I., Shenoy, K.V. (2010). Low-dimensional neural features predict muscle EMG signals. In Annual Internal Conference of the IEEE Engineering in Medicine and Biology Society, 31 Aug. - 4 Sept. 2010. IEEE, 6027-6033.10.1109/IEMBS.2010.562760421097116
  12. Khushaba, R.N., Al-Jumaily, A., Al-Ani, A. (2007). Novel feature extraction method based on fuzzy entropy and wavelet packet transform for myoelectric control. In ISCIT '07 : International Symposium on Communications and Information Technologies, 17-19 October 2007. IEEE, 352-357.10.1109/ISCIT.2007.4392044
  13. Chu, J.-U., Moon, I., Mun, M.-S. (2006). A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand. IEEE Trans. Biomed. Eng., 53 (11), 2232-2239.
  14. Englehart, K., Hudgin, B., Parker, P.A. (2001). A wavelet-based continuous classification scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng., 48 (3), 302-311.10.1109/10.91479311327498
  15. Chu, J.-U., Moon, I., Lee, Y.-J., Kim, S.-K., Mun, M.-S. (2007). A supervised feature-projection-based real-time EMG pattern recognition for multifunction myoelectric hand control. IEEE-ASME Trans. Mechatron., 12 (3), 282-290.10.1109/TMECH.2007.897262
  16. Chan, A.D.C., Green, G.C. (2007). Myoelectric control development toolbox. In 30th Conference of the Canadian Medical & Biological Engineering Society, 16-19 June 2007. CMBES, M0100.
  17. Khushaba, R.N., Al-Ani, A., Al-Jumaily, A. (2010). Orthogonal fuzzy neighborhood discriminant analysis for multifunction myoelectric hand control. IEEE Trans. Biomed. Eng., 57 (6), 1410-1419.10.1109/TBME.2009.203948020172801
  18. Liu, Y.H., Huang, H.P., Weng, C.H. (2007). Recognition of electromyographic signals using cascaded kernel learning machine. IEEE-ASME Trans. Mechatron., 12 (3), 253-264.10.1109/TMECH.2007.897253
  19. Khushaba, R.N., Al-Jumaily, A., Al-Ani, A. (2009). Evolutionary fuzzy discriminant analysis feature projection technique in myoelectric control. Pattern Recognition Lett., 30 (7), 699-707.10.1016/j.patrec.2009.02.004
  20. Khezri, M., Jahed, M. (2011). A neuro-fuzzy inference system for sEMG-based identification of hand motion commands. IEEE Trans. Ind. Electron., 58 (5), 1952-1960.10.1109/TIE.2010.2053334
  21. Rafiee, J., Rafiee, M.A., Yavari, F., Schoen, M.P. (2011). Feature extraction of forearm EMG signals for prosthetics. Expert Syst. Appl., 38 (4), 4058-4067.10.1016/j.eswa.2010.09.068
  22. Phinyomark, A., Limsakul, C., Phukpattaranont, P. (2011). Application of wavelet analysis in EMG feature extraction for pattern classification. Meas. Sci. Rev., 11 (2), 45-52.10.2478/v10048-011-0009-y
  23. Phinyomark, A., Nuidod, A., Phukpattaranont, P. Limsakul, C. (2012). Feature extraction and reduction of wavelet transform coefficients for EMG pattern classification. Electronics and Electrical Engineering, 122 (6), in press.10.5755/j01.eee.122.6.1816
  24. Fukunaka, K. (1990). Introduction to Statistical Pattern Recognition. Academic Press.
  25. Schafer, K.C., Balog, J., Szaniszlo, T., Szalay, D., Mezey, G., Denes, J., Bognar, L., Oertel, M., Takats, Z. (2011). Real time analysis of brain tissue by direct combination of ultrasonic surgical aspiration and sonic spray mass spectrometry. Analytical Chemistry, 83 (20) 7729-7735.10.1021/ac201251s
  26. Belhumeour, P.N., Hespanha, J.P., Kriegman, D.J. (1997). Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. Patt. Anal. Mach. Int., 19 (7), 711-720.
  27. Sakai, M., Kitaoka, N., Takeda, K. (2010). Acoustic feature transformation based on discriminant analysis preserving local structure for speech recognition. IEICE Trans. Inform. Syst., E93D (5), 1244-1252.10.1587/transinf.E93.D.1244
  28. Howland, P., Jeon, M., Park, H. (2003). Structure preserving dimension reduction for clustered text data based on the generalized singular value decomposition. SIAM J. Matrix Anal. Applicat., 25 (1), 165-179.10.1137/S0895479801393666
  29. Jin, Z., Yang, J.Y., Tang, Z.M., Hu, Z.S. (2001). A theorem on the uncorrelated optimal discriminant vectors. Patt. Recog., 34 (10), 2041-2047.10.1016/S0031-3203(00)00135-7
  30. Ye, J. (2005). Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems. Journal of Machine Learning Research, 6, 483-502.
  31. Ye, J., Li, Q. (2004). LDA/QR: An efficient and effective dimension reduction algorithm and its theoretical foundation. Patt. Recog., 37 (4), 851-854.10.1016/j.patcog.2003.08.006
  32. Krzanowski, W.J., Jonathan, P., McCarthy, W.V., Thomas, M.R. (1995). Discriminant analysis with singular covariance matrices: Methods and applications to spectroscopic data. J. Roy. Statist. Soc. Ser. C-Appl. Stat., 44 (1), 101-115.10.2307/2986198
  33. Baudat, G., Anouar, F. (2000). Generalized discriminant analysis using a kernel approach. Neural Comput., 12 (10), 2385-2404.10.1162/08997660030001498011032039
  34. Tao, X., Ye, J., Li, Q., Janardan, R., Cherkassky, V. (2004). Efficient Kernel discriminant analysis via QR decomposition. In NIPS 2004 : 18th Annual Conference on Neural Information Processing Systems, 13-18 December 2004. NIPS, 1529-1536.
  35. Phinyomark, A., Phukpattaranont, P., Limsakul, C., Phothisonothai, M. (2011). Electromyography (EMG) signal classification based on detrended fluctuation analysis. Fluctuation and Noise Lett., 10 (3), 281-301.10.1142/S0219477511000570
  36. Oskoei, M.A., Hu, H. (2008). Support vector machine-based classification scheme for myoelectric control applied to upper limb. IEEE Trans. Biomed. Eng., 55 (8), 1956-1965.10.1109/TBME.2008.91973418632358
  37. Kaufmann, P., Englehart, K., Platzner, M. (2010). Fluctuating EMG signals: Investigating long-term effects of pattern matching algorithms. In Annual Internal Conference of the IEEE Engineering in Medicine and Biology Society, 31 Aug. - 4 Sept. 2010. IEEE, 6357-6360.10.1109/IEMBS.2010.5627288
  38. Geethanjali, P., Ray, K.K. (2011). Identification of motion from multi-channel EMG signals for control of prosthesis hand. Australas. Phys. Eng. Sci. Med., 34 (3), 419-427.10.1007/s13246-011-0079-z
  39. Du, Y.-C., Lin, C.-H., Shyu, L.-Y., Chen, T. (2010). Portable hand motion classifier for multi-channel surface electromyography recognition using grey relational analysis. Expert Syst. Appl., 37 (6), 4283-4291.10.1016/j.eswa.2009.11.072
  40. Khushaba, R.N., Al-Ani, A., Al-Jumaily, A. (2010). Orthogonal fuzzy neighborhood discriminant analysis for multifunction myoelectric hand control. IEEE Trans. Biomed. Eng., 57 (6), 1410-1419.10.1109/TBME.2009.2039480
  41. Yan, Z., Wang, Z., Xie, H. (2008). Joint application of rough set-based feature reduction and fuzzy LS-SVM classifier in motion classification. Med. Biol. Eng. Comput., 46 (6), 519-527.10.1007/s11517-007-0291-x
  42. Yan, Z., Wang, Z., Xie, H. (2008). The application of mutual information-based feature selection and fuzzy LS-SVM-based classifier in motion classification. Comput. Method. Program. Biomed., 90 (3), 275-284.10.1016/j.cmpb.2008.01.003
  43. Clancy, E.A., Morin, E.L., Merletti, R. (2002). Sampling, noise-reduction and amplitude estimation issues in surface electromyography. J. Electromyograph. Kinesiol., 12 (1), 1-16.10.1016/S1050-6411(01)00033-5
  44. Naik, G.R., Kumar, D.K., Arjunan, S.P. (2010). Pattern classification of Myoelectrical signal during different Maximum Voluntary Contractions: A study using BSS techniques. Meas. Sci. Rev., 10 (1), 1-6.
  45. Boostani, R., Moradi, M.H. (2003). Evaluation of the forearm EMG signal features for the control of a prosthetic hand. Physiol. Meas., 24 (2), 309-319.10.1088/0967-3334/24/2/30712812417
  46. Phinyomark, A., Phukpattaranont, P., Limsakul, C. (2011). Wavelet-based denoising algorithm for robust EMG pattern recognition. Fluctuation and Noise Lett., 10 (2), 157-167.10.1142/S0219477511000466
  47. Hussain, M.S., Mamun, Md. (2012). Effectiveness of the wavelet transform on the surface EMG to understand the muscle fatigue during walk. Meas. Sci. Rev., 12 (1), 28-33.10.2478/v10048-012-0005-x
Language: English
Page range: 82 - 89
Published on: May 28, 2012
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2012 A. Phinyomark, H. Hu, P. Phukpattaranont, C. Limsakul, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons License.

Volume 12 (2012): Issue 3 (June 2012)