Have a personal or library account? Click to login
Practical Procedure for Position Tolerance Uncertainty Determination via Monte-Carlo Error Propagation Cover

Practical Procedure for Position Tolerance Uncertainty Determination via Monte-Carlo Error Propagation

By: S. Kosarevsky and  V. Latypov  
Open Access
|Mar 2012

References

  1. De Bièvre, P., (1997). Measurement results without statements of reliability (uncertainty) should not be taken seriously. Accreditation and Quality Assurance 2 (6), p. 269.10.1007/s007690050147
  2. ISO GUM (1995). Guide to the expression of uncertainty in measurement, BIPM, IEC, IFCC, ISO, IUPAC and OIML, ISBN 92-67-10188-9, Second Edition.
  3. Cox, M. G., Harris, P. M., Siebert B. R.-L. (2003). Evaluation of measurement uncertainty based on the propagation of distributions using Monte Carlo simulation. Measurement Techniques 46 (9), 824-833.10.1023/B:METE.0000008439.82231.ad
  4. JCGM 101:2008, (2008). Evaluation of measurement data — Guide to the expression of uncertainty in measurement. Propagation of distributions using Monte Carlo method, Joint Committee for Guides in Metrology, First edition.
  5. Trapet, E., Wäldele, F. (1996). The virtual CMM concept. Advanced mathematical tools in metrology, World Scientific Publ. Comp., 238-247.
  6. Trapet, E., Franke, M., Härtig, F., Schwenke, H., Wäldele, F., Cox, M., Forbes, A., Delbressine, F., Schellekens, P., Trenk, M., Meyer, H., Moritz, G., Guth, Th., Wanner, N. (1999). Traceability of coordinate measurements according to the method of the virtual measuring machine. Final Project Report MAT1-CT94-0076, PTB-report F-35, Part 1 and 2, ISBN 3-89701-330-4.
  7. JCGM 200:2008, (2008). International vocabulary of metrology — Basic and general concepts and associated terms VIM, Joint Committee for Guides in Metrology, Third edition.
  8. ISO 1101:2004, (2004). Geometrical product specifications (GPS) - Geometrical tolerancing - Tolerances of form, orientation, location and run-out, International Organization for Standardization, Second edition.
  9. Feng, S. C., Hopp, T. H. (1991). A review of current geometric tolerancing theories and inspection data analysis algorithms. NISTIR 4509, National Institute of Standards and Technology.10.6028/NIST.IR.4509
  10. Dhanish, P. B., Mathew, J. (2006). Effect of CMM point coordinate uncertainty on uncertainties in determination of circular features. Measurement, 39, 522-531.10.1016/j.measurement.2005.12.005
  11. Liu, Q., Chuck Zhang, C., Ben Wang, H. P. (2001). On the effects of CMM measurement error on form tolerance estimation, Measurement, 30 (1), 33-47.10.1016/S0263-2241(00)00056-7
  12. Romano, D., Vicario, G. (2002) Inspecting geometric tolerances: Uncertainty analysis in position tolerances control on Coordinate Measuring Machines. Statistical Methods and Applications, 11 (1), 83-94.10.1007/BF02511447
  13. Swornowski, P., Rucki, M. (2003). The error occuring in the CMM fitting method. Measurement Science Review, 3 (3), 135-138.
  14. Hopp, T. H. (1994). The sensitivity of three-point circle fitting. NIST report NISTIR 5501.
  15. Leighton, T., Rubinfeld, R. (2006). Mathematics for computer science. Lecture Notes, 6.042/18.062J.
  16. Horn, B. K. P. (1987). Closed-form solution of absolute orientation using unit quaternion. Journal of the Optical Society Of America A: Optics, Image Science and Vision, 4 (4), 629-642.10.1364/JOSAA.4.000629
  17. Horn, B. K. P., Hilden, H. M., Negahdaripour, S. (1988). Closed-form solution of absolute orientation using orthonormal matrices. Journal of the Optical Society Of America A: Optics, Image Science, and Vision, 5 (7), 1127-1135.10.1364/JOSAA.5.001127
  18. Hopp, T. H. (1993). Computational metrology. ASME Manufacturing Review, National Institute of Standards and Technology.
  19. Goodrich, M. T., Mitchell J. S. B., Orletsky M. W. (1994). Practical methods for approximate geometric pattern matching under rigid motions. Proceedings of the tenth annual symposium on computational geometry SCG '94.10.1145/177424.177572
  20. Phillips, S. D. (1991). Performance evaluations. In Bosch, J. (Ed.) Coordinated measuring machines and systems, Marcel Deker Inc, New York, 137-225.
  21. Moré, J. J. (1977). The Levenberg-Marquardt algorithm: Implementation and theory. In Watson, G. A. (Ed.) Numerical analysis, Lecture Notes in Mathematics, Springer Verlag, 105-116.
  22. Knuth, D. E. (1997). The art of computer programming, Volume 2: Seminumerical Algorithms, Reading, Massachusetts: Addison-Wesley, Third edition, xiv+762pp., ISBN 0-201-89684-2.
  23. Law, A. M., Kelton, W. D. (1991). Simulation modeling and analysis, McGraw-Hall, Boston, Polar Method, pp. 466.
  24. Bochkanov, S., Bystritsky, V. ALGLIB project. Numerical library: http://www.alglib.nethttp://www.alglib.net/translator/re/alglib-2.0.0.full.delphi.zip
  25. Minpack Library (1999). http://www.netlib.org/minpack
  26. Taylor, J. R. (1982). An introduction to error analysis, University Science Books.
Language: English
Page range: 1 - 7
Published on: Mar 1, 2012
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2012 S. Kosarevsky, V. Latypov, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons License.

Volume 12 (2012): Issue 1 (February 2012)