Have a personal or library account? Click to login
Methodology for the Evaluation of the Algorithms for Text Line Segmentation Based on Extended Binary Classification Cover

Methodology for the Evaluation of the Algorithms for Text Line Segmentation Based on Extended Binary Classification

By: D. Brodic  
Open Access
|Aug 2011

References

  1. Du, X., Pan, W., Bui, T.D. (2009). Text line segmentation in handwritten documents using Mumford-Shah model. Pattern Recognition, 42 (12), 3136-3145.10.1016/j.patcog.2008.12.021
  2. Likforman Sulem, L., Zahour, A., Taconet, B. (2007). Text line segmentation of historical documents: a survey. International Journal on Document Analysis and Recognition, 9 (2), 123-138.10.1007/s10032-006-0023-z
  3. Amin, A., Wu, S. (2005). Robust skew detection in mixed text/graphics documents. In Proceedings of International Conference on Document Analysis and Recognition - ICDAR'05. Seoul, Korea, 247-251.10.1109/ICDAR.2005.203
  4. Bukhari, S.S., Shafait, F., Breuel, T.M. (2009). Script-Independent handwritten textlines segmentation using active contours. In Proceedings of International Conference on Document Analysis and Recognition - ICDAR'09. Barcelona, Spain, 446-450.10.1109/ICDAR.2009.206
  5. Yi, L., Yefeng, Z., Doermann, D., Jaeger, S. (2008). Script-Independent text line segmentation in freestyle handwritten documents. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30 (8), 1313-1329.
  6. Basu, S., Chaudhuri, C., Kundu, M., et. al. (2007). Text line extraction from multi-skewed handwritten document. Pattern Recognition, 40 (6), 1825-1839.10.1016/j.patcog.2006.10.002
  7. Marti, U.V., Bunke, H. (2002). The IAM-database: an English sentence database for off-line handwriting recognition. Journal on Document Analysis and Recognition, 5 (1), 39-46.10.1007/s100320200071
  8. Sarkar, R., Das, N., Basu, S., Kundu, M., Nasipuri, M., Basu, D. (2011). CMATERdb1: a database of unconstrained handwritten Bangla and Bangla-English mixed script document image. International Journal on Document Analysis and Recognition, 14 (1), 25-33.
  9. Gatos, B., Stamatopoulos, N., Louloudis, G. (2011). ICDAR2009 handwriting segmentation contest. International Journal on Document Analysis and Recognition, 14 (1), 1-13.10.1007/s10032-010-0122-8
  10. Louloudis, G., Gatos, B., Pratikakis, I., Halatsis, C. (2009) Text line and word segmentation of handwritten documents. Pattern Recognition, 42 (12), 3169-3183.10.1016/j.patcog.2008.12.016
  11. Sanchez, A., Suarez, P.D., Mello, C.A.B., Oliveira, A.L.I., Alves, V.M.O. (2008). Text line segmentation in images of handwritten historical documents. In Proceedings of the First Workshops on Image Processing Theory, Tools and Applications - IPTA 2008. Sousse, Tunisia, 1-6.10.1109/IPTA.2008.4743758
  12. Brodić, D., Milivojević, D.R., Milivojević, Z. (2010). Basic test framework for the evaluation of text line segmentation and text parameter extraction. Sensors, 10 (5), 5263-5279.10.3390/s100505263329217222399932
  13. Brodić, D. (2010). Basic experiments set for the evaluation of the text line segmentation. Przegląd Elektrotechniczny, 86 (11), 353-357.
  14. Brodić, D. (2011). Advantages of the extended water flow algorithm for handwritten text line segmentation. In Kuznetsov, S.O., et al. (eds.) Pattern Recognition and Machine Intelligence, LNCS, Vol. 6744. Berlin-Heidelberg: Springer, 418-423.
  15. Khashman, A., Sekeroglu, B. (2008). Document image binarisation using a supervised neural network. International Journal of Neural Systems, 18 (5), 405-418.10.1142/S012906570800167118991363
  16. Brodić, D. (2011). The evaluation of the initial skew rate for printed text. Journal of Electrical Engineering - Elektrotechnický časopis, 62 (3), 134-140.10.2478/v10187-011-0022-2
  17. Zramdini, A., Inglod, R. (1993). Optical font recognition from projection profiles. Electronic Publishing, 6 (3), 249-260.
  18. Swets, J.A. (1988). Measuring the accuracy of diagnostic systems. Science (New Series), 240 (4857), 1285-1293.
  19. Qian, X., Liu, G., Wang, H., Su, R. (2007). Text detection, localization, and tracking in compressed video. Signal Processing: Image Communication, 22 (9), 752-768.
  20. Bukhari, S.S., Shafait, F., Bruesl, T.M. (2009). Adaptive binarization of unconstrained hand-held camera-captured document images. Journal of Universal Computer Science, 15 (18), 3343-3363.
  21. Shi, Z., Govindaraju, V. (2004). Line separation for complex document images using fuzzy runlength. In Proceedings of the International Workshop on Document Image Analysis for Libraries. Palo Alto, U.S.A.
  22. Manmatha, R., Rothfeder, J.L. (2005). A scale space approach for automatically segmenting words from historical handwritten documents. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27 (8), 1212-1225.10.1109/TPAMI.2005.15016119261
  23. Brodić, D., Milivojević, Z. (2010). Optimization of the Gaussian kernel extended by binary morphology for text line segmentation. Radioengineering, 19 (4), 718-724.
  24. Razak, Z., Zulkiflee, K., et al. (2008). Off-Line handwriting text line segmentation: a review. International Journal of Computer Science and Network Security, 8, 12-20.
  25. Brodić, D. (2010). Optimization of the anisotropic Gaussian kernel for text segmentation and parameter extraction. In Calude, C.S., Sassone, V. (eds.) Theoretical Computer Science, IFIP AICT, Vol. 323. Berlin-Heidelberg: Springer, 140-152.10.1007/978-3-642-15240-5_11
Language: English
Page range: 71 - 78
Published on: Aug 12, 2011
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2011 D. Brodic, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons License.

Volume 11 (2011): Issue 3 (June 2011)