Have a personal or library account? Click to login
On the Possibilistic Approach to Linear Regression with Rounded or Interval-Censored Data Cover

On the Possibilistic Approach to Linear Regression with Rounded or Interval-Censored Data

By: Michal Černý and  Miroslav Rada  
Open Access
|Jun 2011

References

  1. Guo, P., Tanaka, H. (2006). Dual models for possibilistic regression analysis. Computational Statistics & Data Analysis 51 (1), 253-266.10.1016/j.csda.2006.04.005
  2. Jun-peng, G.,Wen-hua, L. (2008). Regression analysis of interval data based on error theory. In: Proceedings of 2008 IEEEInternational Conference on Networking, Sensing and Control, ICNSC, Sanya, China, 2008, 552-555.10.1109/ICNSC.2008.4525279
  3. Lee, H., Tanaka, H. (1998). Fuzzy regression analysis by quadratic programming reflecting central tendency. Behaviormetrika 25 (1), 65-80.10.2333/bhmk.25.65
  4. Lima Neto, E. de A., de Carvalho, F. de A. T. (2010). Constrained linear regression models for symbolic interval-valued variables. Computational Statistics & Data Analysis 54 (2), 333-347.10.1016/j.csda.2009.08.010
  5. Moral-Arce, I., Rodríguez-Póo, J. M., Sperlich, S. (2011). Low dimensional semiparametric estimation in a censored regression model. Journal of Multivariate Analysis 102 (1), 118-129.10.1016/j.jmva.2010.08.006
  6. Pan, W., Chappell, R. (1998). Computation of the NPMLE of distribution functions for interval censored and truncated data with applications to the Cox model. Computational Statistics & Data Analysis 28 (1), 33-50.10.1016/S0167-9473(98)00026-7
  7. Zhang, X., Sun, J. (2010). Regression analysis of clustered interval-censored failure time data with informative cluster size. Computational Statistics & Data Analysis 54 (7), 1817-1823.10.1016/j.csda.2010.01.035
  8. Inuiguchi, M., Fujita, H., Tanino, T. (2002). Robust interval regression analysis based on Minkowski difference. In: SICE 2002, proceedings of the 41st SICE Annual Conference, vol. 4, Osaka, Japan, 2002, 2346-2351.
  9. Nasrabadi, E., Hashemi, S. (2008). Robust fuzzy regression analysis using neural networks. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 16 (4), 579-598.10.1142/S021848850800542X
  10. Hesmaty, B., Kandel, A. (1985). Fuzzy linear regression and its applications to forecasting in uncertain environment. Fuzzy Sets and Systems 15, 159-191.10.1016/0165-0114(85)90044-2
  11. Hladík, M., černý, M. (2010). Interval regression by tolerance analysis approach. Fuzzy Sets and Systems. Submitted, Preprint: KAM-DIMATIA Series 963.
  12. Hladík, M., černý, M. (2010). New approach to interval linear regression. In: Kasimbeyli, R., et al. (eds.), 24th Mini-EURO conference on continuous optimization and information-based technologies in the financial sector MEC EurOPT 2010, Selected papers, Vilnius, Lithuania, 2010, 167-171.
  13. Tanaka, H., Lee, H. (1997). Fuzzy linear regression combining central tendency and possibilistic properties. In: Proceedings of the Sixth IEEE International Conference on Fuzzy Systems, vol. 1, Barcelona, Spain, 1997, 63-68.
  14. Tanaka, H., Lee, H., (1998). Interval regression analysis by quadratic programming approach. IEEE Transactions on Fuzzy Systems 6 (4), 473-481.10.1109/91.728436
  15. Tanaka, H., Watada, J. (1988). Possibilistic linear systems and their application to the linear regression model. Fuzzy Sets and Systems 27 (3), 275-289.10.1016/0165-0114(88)90054-1
  16. Černý, M., Rada, M. (2010). A note on linear regression with interval data and linear programming. In: Quantitative methods in economics: Multiple Criteria Decision Making XV, Slovakia: Kluwer, Iura Edition, 276-282.
  17. Dunyak, J. P., Wunsch, D. (2000). Fuzzy regression by fuzzy number neural networks. Fuzzy Sets and Systems 112 (3), 371-380.10.1016/S0165-0114(97)00393-X
  18. Huang, C.-H., Kao, H.-Y. (2009). Interval regression analysis with soft-margin reduced support vector machine. Lecture Notes in Computer Science 5579, Germany: Springer, 826-835.10.1007/978-3-642-02568-6_84
  19. Ishibuchi, H., Tanaka, H., Okada, H. (1993). An architecture of neural networks with interval weights and its application to fuzzy regression analysis. Fuzzy Sets and Systems 57 (1), 27-39.10.1016/0165-0114(93)90118-2
  20. Bentbib, A. H. (2002). Solving the full rank interval least squares problem. Applied Numerical Mathematics 41 (2), 283-294.10.1016/S0168-9274(01)00104-0
  21. Gay, D. M. (1988). Interval least squares—a diagnostic tool. In: Moore, R. E., (ed.), Reliability in computing, the role of interval methods in scientific computing, Perspectives in Computing, vol. 19, Boston, USA: Academic Press, 183-205.10.1016/B978-0-12-505630-4.50016-X
  22. Sheppard, W. (1898). On the calculation of the most probable values of frequency constants for data arranged according to equidistant divisions of a scale. Proceedings of the London Mathematical Society 29, 353-380.
  23. Kendall, M. G. (1938). The conditions under which Sheppard's corrections are valid. Journal of the Royal Statistical Society 101, 592-605.10.2307/2980630
  24. Eisenhart, C. (1947). The assumptions underlying the analysis of variance. Biometrics 3, 1-21.10.2307/3001534
  25. Schneeweiss, H., Komlos, J. (2008). Probabilistic rounding and Sheppard's correction. Technical report 45, Department of Statistics, University of Munich. Available at: http://epub.ub.uni-muenchen.de/8661/1/tr045.pdf
  26. Di Nardo, E. (2010). A new approach to Sheppard's corrections. Mathematical Methods of Statistics, 19 (2), 151-162.10.3103/S1066530710020043
  27. Wimmer, G., Witkovský, V. (2002). Proper rounding of the measurement results under the assumption of uniform distribution. Measurement Science Review 2 (1), 1-7.
  28. Wimmer, G., Witkovský, V., Duby, T. (2000). Proper rounding of the measurement results under normality assumptions. Measurement Science and Technology 11, 1659-1665.10.1088/0957-0233/11/12/302
  29. Ziegler, G. (2004). Lectures on polytopes, Germany: Springer.
  30. Avis, D., Fukuda, K. (1996). Reverse search for enumeration. Discrete Applied Mathematics 65, 21-46.10.1016/0166-218X(95)00026-N
  31. Ferrez, J.-A., Fukuda, K., Liebling, T. (2005). Solving the fixed rank convex quadratic maximization in binary variables by a parallel zonotope construction algorithm. European Journal of Operational Research 166, 35-50.10.1016/j.ejor.2003.04.011
  32. Grötschel, M., Lovász, L., Schrijver, A. (1993). Geometric algorithms and combinatorial optimization, Germany: Springer.10.1007/978-3-642-78240-4
Language: English
Page range: 34 - 40
Published on: Jun 3, 2011
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2011 Michal Černý, Miroslav Rada, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons License.

Volume 11 (2011): Issue 2 (April 2011)