Have a personal or library account? Click to login
Measurement, Information Channels, and Discretization: Exploring the Links Cover

Measurement, Information Channels, and Discretization: Exploring the Links

Open Access
|Dec 2009

References

  1. Aerts, D., Daubechies, I. (1978). Physical justification for using the tensor product to describe two quantum systems as one joint system. Helvetica Physica Acta, 51, 661-675.
  2. Batitsky, V., Domotor, Z. (2007). When good theories make bad predictions. Synthese, 157, 79-103.10.1007/s11229-006-9033-0
  3. Benatti, F., Cappellini, V. (2005). Continuous limit of discrete sawtooth maps and its algebraic framework. Journal of Mathematical Physics, 46, 1-25.10.1063/1.1917283
  4. Domotor, Z., Batitsky, V. (2008). The analytic versus representational theory of measurement: A philosophy of science perspective. Measurement Science Review, 8 (6), 129-146.
  5. Domotor, Z., Batitsky, V. (2009). An algebraic-analytic framework for measurement theory. Under review for publication in Measurement.
  6. Gelfand, I. M. (1939). On normed rings. Doklady Akad. Nauk U.S.S.R. 23, 430-432.
  7. Kadison, R. V., Ringrose, J. R. (1983). Fundamentals of the Theory of Operator Algebras, Vol. II. Academic Press, San Diego.
  8. Lasota, A., Mackey, M. C. (1994). Chaos, Fractals, and Noise. Stochastic Aspects of Dynamics, 2nd edition. Springer-Verlag, New York.10.1007/978-1-4612-4286-4
  9. Lima, F. M. S., Arun, P. (2006). An accurate formula for the period of a simple pendulum oscillating beyond the small angle regime. American Journal of Physics, 74, 892-895.10.1119/1.2215616
  10. Lindblad, G. (1996). On the existence of quantum subdynamics. Journal of Physics A: Math. Gen., 29, 4197-4207.10.1088/0305-4470/29/14/037
  11. Nassopoulos, G. F. (1999). On a comparison of real with complex involutive complete algebras. Journal of Mathematical Sciences 36, 3755-3765.10.1007/BF02172669
  12. Sakai, S. (1998). C*-Algebras and W*-Algebras. Springer, New York.10.1007/978-3-642-61993-9
  13. Umegaki, H. (1969). Representations and extremal properties of averaging operators, and their applications to information channels. Journal of Mathematical Analysis and Applications, 25, 41-73.10.1016/0022-247X(69)90212-1
  14. Walters, P. (1981). Introduction to Ergodic Theory. Springer, Tokyo.
  15. Yosida, Y. (1980). Functional Analysis, 6th edition. Springer-Verlag, New York.
Language: English
Page range: 134 - 161
Published on: Dec 23, 2009
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2009 Zoltan Domotor, Vadim Batitsky, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons License.

Volume 9 (2009): Issue 6 (December 2009)