Have a personal or library account? Click to login
The Analytic Versus Representational Theory of Measurement: A Philosophy of Science Perspective: (Invited Article) Cover

The Analytic Versus Representational Theory of Measurement: A Philosophy of Science Perspective: (Invited Article)

Open Access
|Dec 2008

References

  1. Batitsky, V. (1998). Empiricism and the myth of fundamental measurement. Synthese, 116, 51-73.10.1023/A:1005016725551
  2. Batitsky, V. (2002). Some measurement-theoretic concerns about Hale's "Reals by Abstraction". Philosophia Mathematica, 10 (3), 286-303.10.1093/philmat/10.3.286
  3. Batitsky, V., Domotor, Z. (2007). When good theories make bad predictions. Synthese, 157, 79-103.10.1007/s11229-006-9033-0
  4. Beltramenti, E. G., Cassinelli, G. (1981). The Logic of Quantum Mechanics. Reading, Massachusetts: Addison-Wesley.
  5. Benatti, F., Cappellini, V. (2005). Continuous limit of discrete sawtooth maps and its algebraic framework. Journal of Mathematical Physics, 46, 062702, 1-26.10.1063/1.1917283
  6. Bratelli, O., Robinson, D. W. (1987). Operator Albebras and Quantum Statistical Mechanics: Volume 1. New York: Springer.10.1007/978-3-662-02520-8
  7. Campbell, N. R. (1920). Physics: The Elements. Cambridge: Cambridge University Press.
  8. Carnap, R. (1966). Philosophical Foundations of Physics. New York: Basic Books.
  9. de Groote, H. F. (2005). Observables. arXiv:math-ph/0507.019.
  10. Domotor, Z., Stelzer, J. (1971). Representation of finitely additive semiordered qualitative probability structures. Journal of Mathematical Psychology, 8, 145-158.10.1016/0022-2496(71)90010-1
  11. Döring, A. (2005). Observables as functions: Antonymous functions. arXiv:math-ph/0510.102.
  12. Döring, A., Isham, C. J. (2008). A topos foundation for theories of physics: I. Formal languages for physics. Journal of Mathematical Physics, 49, 0053515, 1-25.10.1063/1.2883740
  13. Gelfand, I. M. (1939). On normed rings. Doklady Akademii Nauk U. S. S. R, 23, 430-432.
  14. González, J. A. N., de Salas J. B. S. (2003). C∞-Differentiable Spaces. Lecture Notes in Mathematics, No. 1824. New York: Springer.10.1007/b13465
  15. von Helmholtz, H. (1887). Zählen und Messen erkenntnistheoretisch Betrachtet. In Philosophische Aufsätze Eduard Zeller gewidmet. Leibzig: Fuess.
  16. Hilbert, D. (1899). Grundlagen der Geometrie. In Festschrift zur Feier der Enthüllung des Gauss-Weber-Denkmals in Göttingen. Leibzig: Teubner, 1-92.
  17. Hölder, O. (1901). Die Axiome der Quantität und die Lehre vom Mass. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig: Mathematisch-Physische Klasse, 53, 1-64.
  18. Krantz, D. H. (1968). A survey of measurement theory. In Danzig, G. B., Veinott, A. F. (eds.) Mathematics of the Decision Sciences: Part 2. Providence, RI: American Mathematical Society, 314-350.
  19. Krantz, D. H., Luce, D., Suppes, P., Tversky, A. (1971). Foundations of Measurement: Volume 1. New York: Academic Press.
  20. Kyburg, H. E. (1997). Quantities, magnitudes and numbers. Philosophy of Science, 64, 377-411.10.1086/392558
  21. Larsen, R. (1973). Banach Algebras. An Introduction. New York: Dekker.
  22. Luce, D., Marley, A. A. J. (1969). Extensive measurement when concatenation is restricted and maximal elements may exist. In Morgenbesser, S., Suppes, P., White, M. (eds.) Philosophy, Science, and Method: Essays in Honor of Ernest Nagel. New York: St. Martin Press, 235-249.
  23. Luce, D., Narens L. (1994). Fifteen problems concerning the representational theory of measurement. In Humphreys, P. (ed.) Patrick Suppes: Scientific Philosopher. Volume 2. Kluwer Academic Publishers, 219-249.10.1007/978-94-011-0776-1_9
  24. Luce, D., Suppes P. (2002). Representational measurement theory. In Wixted, J., Pashler, H. (eds.) Stevens' Handbook of Experimental Psychology: Volume 4. New York: Wiley, 1-41.10.1002/0471214426.pas0401
  25. Mari, L. (2000). Beyond the representational viewpoint: A new formalization of measurement. Measurement, 27, 71-84.10.1016/S0263-2241(99)00055-X
  26. Mundy, B. (1987). Faithful representation, physical extensive measurement theory and Archimedean axioms. Synthese, 70, 373-400.10.1007/BF00414156
  27. Narens, L. (1985). Abstract Measurement Theory. Cambridge: MIT Press.
  28. Nassopoulos, G. F. (1999). On a comparison of real with complex involutive complete algebras. Journal of Mathematical Sciences, 36, 3755-3765.10.1007/BF02172669
  29. Stevens, S. S. (1951). Mathematics, measurement and psychophysics. In Stevens, S. S. (ed.) Handbook of Experimental Psychology. New York: Wiley, 1-49.
  30. Pfanzagl, J. (1968). Theory of Measurement. New York: Wiley.
  31. Sontag, E. D. (1990). Mathematical Control Theory. New York: Springer.10.1007/978-1-4684-0374-9
  32. Suppes, P. (1969). Studies in the Methodology and Foundations of Science. Boston: D. Reidel.10.1007/978-94-017-3173-7
  33. Suppes, P. (1969a). A set of independent axioms for extensive quantities. In Suppes (1969).10.1007/978-94-017-3173-7_3
  34. Suppes, P., Zinnes, J. (1963). Basic measurement theory. In Luce, R. D. et al. (eds.) Handbook of Mathematical Psychology: Volume 1. New York: Wiley, 3-76.
  35. Suppes, P., Krantz, D. H., Luce, D., Tversky, A. (1989). Foundations of Measurement: Volume 2. New York: Academic Press.
  36. van Fraassen, B. (1980). The Scientific Image. New York: Oxford University Press.10.1093/0198244274.001.0001
Language: English
Page range: 129 - 146
Published on: Dec 29, 2008
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2008 Zoltan Domotor, Vadim Batitsky, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons License.

Volume 8 (2008): Issue 6 (December 2008)