Have a personal or library account? Click to login
Comparison of Two ANN Methods for Classification of Spirometer Data Cover

Comparison of Two ANN Methods for Classification of Spirometer Data

Open Access
|Jun 2008

References

  1. Pierce, R. (2005). Spirometer: an essential clinical measurement. Aust. Fam. Physician 34 (7), 535-539.
  2. Oud, M. and Maarsingh, E. J. W. (2004). Spirometer and forced oscillatory assisted optimal frequency band determination for the computerized analysis of tracheal lung sounds in asthma. Physiol. Meas. 25, 595-606.10.1088/0967-3334/25/3/001
  3. Miller, M. R., Hankinson, J., Brusasco, V., Brugos, F., et al. (2005). Standardisation of spirometry. Eur. Respir. J. 26 (2), 319-338.10.1183/09031936.05.00034805
  4. Arora, V. K. and Raghu, S. (2000). Flow volume curves: clinical significance. Lung India 14 (4), 169-171.
  5. Mark, D. S., Micharl, W. K., Mitchell, L. D., James, R. Y. and Michael, R. K. (2006). Classifying severity of cystic fibrosis lung disease using longitudinal pulmonary function data. Am. J. Respir. Crit. Care Med. 174 (7), 780-786.
  6. Kornel, P., Bela, M., Rainer, S., Zalan, D., Zsolt, T. and Janos, F. (1998). Application of neural network in medicine. Diag. Med. Tech. 4 (3), 538-546.
  7. Gaetano, P. (2004). Artificial neural network in the assessment of respiratory mechanism. Unpublished doctoral dissertation, Faculty of Medicine, University of Upsaliensis, Uppsala.
  8. Botis, T. and Halkiotis, S. (2003). Neural networks for the prediction of spirometric reference values. Med. Inform. Internet Med. 28 (4), 299-309.10.1080/14639230310001621701
  9. Juroszek, B. (2005). The Influence of gas parameters on the result of spirometric test. Meas. Sci. Rev. 5 (2), 25-28.
  10. Ofer, B., Shimon, A., Alexander, G. and Israel, B. (2004). Model-Based prediction of expiratory resistance index in patients with asthma. J. Clinic Monit. Comput. 18 (4), 241-245.
  11. Joon, L., Stefanie, B., Mike, J. C., David, J. K., Glenn, B. and Tom, C. (2006). A radial basis classifier for the automatic detection of aspiration in children. J. NeuroEng. Rehabil. 3, 1-17.
  12. Abboud, S., Barnea, O., Guber, A., Narkiss, N. and Bruderman, I. (1995). Maximum expiratory flow-volume curve: mathematical model and experimental results. Med. Eng. Phys. 17 (5), 332-336.10.1016/1350-4533(95)97312-D
  13. Gaetano, P., Marieann, H., Christian, R., Rocco, G. and Tommaso, F. (2001). Assessment of respiratory mechanism by artificial neural network: an exploratory study. J. Appl. Physiol. 90 (5), 1817-1824.
  14. Jouni, H., Jaakko, K., Tuija, P. and Markku, M. N. (1999). Prevalence of asthma, aspirin intolerance, nasal polyposis and chronic obstructive pulmonary disease in a population-based study. Int. J. Epidemiol. 28 (4), 717-722.
  15. Mahesh, V. and Ramakrishnan, S. (2007). Detection of obstructive respiratory abnormality using flow-volume spirometry and radial basis function neural networks. J. Med. Syst. 31 (6), 461-465.
  16. Mahesh, V. and Ramakrishnan, S. (2007). Neural network based classification of normal and abnormal pulmonary function using spirometric measurements. J. Mech. Med. Bio. 7 (2), 151-161.
  17. Ulmer, W. T. (2003). Lung Function-Clinical importance, problems, and new results. J. Physiol Pharmacol. 54 (1), 11-13.
Language: English
Page range: 53 - 57
Published on: Jun 25, 2008
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2008 Sujatha Manoharan, Mahesh Veezhinathan, Swaminathan Ramakrishnan, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons License.

Volume 8 (2008): Issue 3 (June 2008)