References
- Pierce, R. (2005). Spirometer: an essential clinical measurement. Aust. Fam. Physician 34 (7), 535-539.
- Oud, M. and Maarsingh, E. J. W. (2004). Spirometer and forced oscillatory assisted optimal frequency band determination for the computerized analysis of tracheal lung sounds in asthma. Physiol. Meas. 25, 595-606.10.1088/0967-3334/25/3/001
- Miller, M. R., Hankinson, J., Brusasco, V., Brugos, F., et al. (2005). Standardisation of spirometry. Eur. Respir. J. 26 (2), 319-338.10.1183/09031936.05.00034805
- Arora, V. K. and Raghu, S. (2000). Flow volume curves: clinical significance. Lung India 14 (4), 169-171.
- Mark, D. S., Micharl, W. K., Mitchell, L. D., James, R. Y. and Michael, R. K. (2006). Classifying severity of cystic fibrosis lung disease using longitudinal pulmonary function data. Am. J. Respir. Crit. Care Med. 174 (7), 780-786.
- Kornel, P., Bela, M., Rainer, S., Zalan, D., Zsolt, T. and Janos, F. (1998). Application of neural network in medicine. Diag. Med. Tech. 4 (3), 538-546.
- Gaetano, P. (2004). Artificial neural network in the assessment of respiratory mechanism. Unpublished doctoral dissertation, Faculty of Medicine, University of Upsaliensis, Uppsala.
- Botis, T. and Halkiotis, S. (2003). Neural networks for the prediction of spirometric reference values. Med. Inform. Internet Med. 28 (4), 299-309.10.1080/14639230310001621701
- Juroszek, B. (2005). The Influence of gas parameters on the result of spirometric test. Meas. Sci. Rev. 5 (2), 25-28.
- Ofer, B., Shimon, A., Alexander, G. and Israel, B. (2004). Model-Based prediction of expiratory resistance index in patients with asthma. J. Clinic Monit. Comput. 18 (4), 241-245.
- Joon, L., Stefanie, B., Mike, J. C., David, J. K., Glenn, B. and Tom, C. (2006). A radial basis classifier for the automatic detection of aspiration in children. J. NeuroEng. Rehabil. 3, 1-17.
- Abboud, S., Barnea, O., Guber, A., Narkiss, N. and Bruderman, I. (1995). Maximum expiratory flow-volume curve: mathematical model and experimental results. Med. Eng. Phys. 17 (5), 332-336.10.1016/1350-4533(95)97312-D
- Gaetano, P., Marieann, H., Christian, R., Rocco, G. and Tommaso, F. (2001). Assessment of respiratory mechanism by artificial neural network: an exploratory study. J. Appl. Physiol. 90 (5), 1817-1824.
- Jouni, H., Jaakko, K., Tuija, P. and Markku, M. N. (1999). Prevalence of asthma, aspirin intolerance, nasal polyposis and chronic obstructive pulmonary disease in a population-based study. Int. J. Epidemiol. 28 (4), 717-722.
- Mahesh, V. and Ramakrishnan, S. (2007). Detection of obstructive respiratory abnormality using flow-volume spirometry and radial basis function neural networks. J. Med. Syst. 31 (6), 461-465.
- Mahesh, V. and Ramakrishnan, S. (2007). Neural network based classification of normal and abnormal pulmonary function using spirometric measurements. J. Mech. Med. Bio. 7 (2), 151-161.
- Ulmer, W. T. (2003). Lung Function-Clinical importance, problems, and new results. J. Physiol Pharmacol. 54 (1), 11-13.