Have a personal or library account? Click to login
Statistical View on Phase and Magnitude Information in Signal Processing Cover

Statistical View on Phase and Magnitude Information in Signal Processing

Open Access
|Aug 2012

References

  1. Blackledge J. M. (2003). Digital Signal Processing, Horwood Publishing, Chichester, West Sussex, England.
  2. Bloomfield P. (2000). Fourier Analysis of Time Series: An Introduction, Wiley, New York.10.1002/0471722235
  3. Braun W. J., Kulperger R. J. (1997). Properties of a Fourier Bootstrap Method for Time Series, Communications in Statistics - Theory and Methods, 26(6), 1329-1335.10.1080/03610929708831985
  4. Bremaud P. (2002). Mathematical Principles of Signal Processing: Fourier and Wavelet Analysis, Springer Verlag Inc., New York.
  5. Brillinger D. R. (1975). Time Series - Data Analysis and Theory, Holt, Rinehart and Winston Inc., New York.
  6. Cooley J. W. and Tukey J. W. (1965). An Algorithm for the Machine Calculation of Complex Fourier Series, Mathematics of Computation, 19, 297-301.10.1090/S0025-5718-1965-0178586-1
  7. Gasquet C., Witomski P. (1999). Fourier Analysis and Applications - Filtering, Numerical Computation, Wavelets, Springer Verlag Inc., New York.
  8. Hansen P. Ch., Nagy J. G., O'Leary D. P. (2006). Deblurring Images, Matrices, Spectra and Filtering, SIAM, Philadelphia.10.1137/1.9780898718874
  9. Hayes M., Lim J., Oppenheim A. (1980). Signal Reconstruction from Phase or Magnitude, IEEE Transactions on Acoustics Speech and Signal Processing, ASSP-28(6), pp. 672-680.
  10. Hoggar S. D. (2006). Mathematics of Digital Images - Creation, Compression, Restoration, Recognition, Cambridge University Press, Cambridge.10.1017/CBO9780511810787
  11. Johnson N. L., Kotz S., Balakrishnan N. (1994). Continuous Univariate Distributions, Vol. 1-2, John Wiley & Sons, New York.
  12. Koopmans L. H. (1974). The Spectral Analysis of Time Series, Academic Press, New York.
  13. Mammen E. and Nandi S. (2008). Some Theoretical Properties of Phase-Randomized Multivariate Surrogates, Statistics, 42(3), 195-205.10.1080/02331880701736572
  14. Ni X. and Huo X. (2007). Statistical Interpretation of the Importance of Phase Information in Signal and Image Reconstruction, Statistics and Probability Letters, 77(4), 447-454.10.1016/j.spl.2006.08.025
  15. Oppenheim A. V., Lim J. S. (1981). The Importance of Phase in Signals, Proceedings of the IEEE, 69(5), 529-541.10.1109/PROC.1981.12022
  16. Popiński W. (1997). On Consistency of Discrete Fourier Analysis of Noisy Time Series, Artificial Satellites - Journal of Planetary Geodesy, 32(3), 131-142.
  17. Popiński W. (2008). Insight into the Fourier Transform Band Pass Filtering Technique, Artificial Satellites - Journal of Planetary Geodesy, 43(4), 129-141.10.2478/v10018-009-0012-9
  18. Popiński W. (2010). On Discrete Fourier Spectrum of Randomly Modulated Signals, Artificial Satellites - Journal of Planetary Geodesy, 45(3), 143-152.10.2478/v10018-011-0003-5
  19. Press W. H., Flannery B. P., Teukolsky S. A., and Vetterling W. T. (1992). Numerical Recipes - The Art of Scientific Computing, Cambridge University Press, Cambridge.
  20. Schreiber T., Schmitz A. (2000). Surrogate Time Series, Physica D, 142(3-4), 346-382.10.1016/S0167-2789(00)00043-9
  21. Singleton R. C. (1969). An Algorithm for Computing the Mixed Radix Fast Fourier Transform, IEEE Transactiions on Audio and Electroacoustics, AU-17(2), 93-103.10.1109/TAU.1969.1162042
DOI: https://doi.org/10.2478/v10018-012-0018-6 | Journal eISSN: 2083-6104 | Journal ISSN: 1509-3859
Language: English
Page range: 127 - 136
Published on: Aug 9, 2012
Published by: Polish Academy of Sciences, Space Research Centre
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2012 Waldemar Popiński, published by Polish Academy of Sciences, Space Research Centre
This work is licensed under the Creative Commons License.

Volume 47 (2012): Issue 3 (September 2012)