Have a personal or library account? Click to login
On Discrete Fourier Spectrum of Randomly Modulated Signals Cover

On Discrete Fourier Spectrum of Randomly Modulated Signals

Open Access
|Feb 2011

References

  1. Allen M. R., Robertson A. W. (1996) Distinguishing Modulated Oscillations from Coloured Noise in Multivariate Datasets, Climate Dynamics, Vol. 12, No. 11, 775-784.
  2. Blackledge J. M. (2003) Digital Signal Processing, Horwood Publishing, Chichester, West Sussex, England.
  3. Bloomfield P. (2000) Fourier Analysis of Time Series: An Introduction, Wiley, New York.10.1002/0471722235
  4. Bremaud P. (2002) Mathematical Principles of Signal Processing: Fourier and Wavelet Analysis, Springer Verlag Inc., New York.
  5. Brillinger D. R. (1975) Time Series - Data Analysis and Theory, Holt, Rinehart and Winston Inc., New York.
  6. Cooley J. W. and Tukey J. W. (1965) An Algorithm for the Machine Calculation of Complex Fourier Series, Mathematics of Computation, Vol. 19, 297-301.
  7. Foster G. (1996a) Time Series by Projection I: Statistical Properties of Fourier Analysis, The Astronomical Journal, Vol. 111, No. 1, 541-554.10.1086/117805
  8. Foster G. (1996b) Time Series by Projection II: Tensor Methods for Time Series Analysis, The Astronomical Journal, Vol. 111, No. 1, 555-566.10.1086/117806
  9. Gasquet C., Witomski P. (1999) Fourier Analysis and Applications - Filtering, Numerical Computation, Wavelets, Springer Verlag Inc., New York.
  10. Hinich M. J. (2003) Detecting Randomly Modulated Pulses in Noise, Signal Processing, Vol. 83, Issue 6, 1349-1352.
  11. Koopmans L. H. (1974) Spectral Analysis of Time Series, Academic Press, New York.
  12. Mammen E. and Nandi S. (2008) Some Theoretical Properties of Phase-Randomized Multivariate Surrogates, Statistics, Vol. 42, No. 3, 195-205.
  13. Ni X. and Huo X. (2007) Statistical Interpretation of the Importance of Phase Information in Signal and Image Reconstruction, Statistics and Probability Letters, Vol. 77, Issue 4, 447-454.
  14. Popiński W. (1997) On Consistency of Discrete Fourier Analysis of Noisy Time Series, Artificial Satellites - Journal of Planetary Geodesy, Vol. 32, No. 3, 131-142.
  15. Press W. H., Flannery B. P., Teukolsky S. A., Vetterling W. T. (1992) Numerical Recipes - The Art of Scientific Computing, Cambridge University Press, Cambridge.
  16. Singleton R. C. (1969) An Algorithm for Computing the Mixed Radix Fast Fourier Transform, IEEE Transactions on Audio and Electroacoustics, Vol. AU-17, No. 2, 93-103.
  17. Speed T. P. (1985) Some Practical and Statistical Aspects of Filtering and Spectrum Estimation, In Price J. F. (Editor), Fourier Techniques and Applications, Plenum Press, New York, 101-118.10.1007/978-1-4613-2525-3_6
  18. Vautard R., Ghil M. (1989) Singular Spectrum Analysis in Nonlinear Dynamics with Applications to Paleoclimatic Time Series, Physica D, Vol. 35, 395-424.
  19. Walker A. M. (1971) On the Estimation of a Harmonic Component in a Time Series with Stationary Independent Residuals, Biometrika, Vol. 58, No. 1, 21-36.
DOI: https://doi.org/10.2478/v10018-011-0003-5 | Journal eISSN: 2083-6104 | Journal ISSN: 1509-3859
Language: English
Page range: 143 - 152
Published on: Feb 10, 2011
Published by: Polish Academy of Sciences, Space Research Centre
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2011 Waldemar Popiński, published by Polish Academy of Sciences, Space Research Centre
This work is licensed under the Creative Commons License.

Volume 45 (2010): Issue 3 (September 2010)