Have a personal or library account? Click to login
Towards Validation of Satellite Gradiometric Data Using Modified Version of 2nd Order Partial Derivatives of Extended Stokes' Formula Cover

Towards Validation of Satellite Gradiometric Data Using Modified Version of 2nd Order Partial Derivatives of Extended Stokes' Formula

By: M. Eshagh  
Open Access
|Apr 2010

References

  1. Albertella A., Migliaccio F. and Sansò F. (2002) GOCE: The Earth Field by Space Gradiometry. Celestial Mechanics and Dynamic Astronomy, Vol. 83, 1-15.10.1023/A:1020104624752
  2. Balmino G., Perosanz F., Rummel R., Sneeuw N., Sünkel H. and Woodworth P. (1998) European Views on Dedicated Gravity Field Missions: GRACE and GOCE. An Earth Sciences Division Consultation Document, ESA, ESD-MAG-REP-CON-001.
  3. Balmino G., Perosanz F., Rummel R., Sneeuw N. and Suenkel H. (2001) CHAMP, GRACE and GOCE: Mission Concepts and Simulations. Bollettino di Geofisica Teorica ed Applicata, Vol. 40, No. 3-4, 309-320.
  4. Bouman J. and Koop R. (2003) Error assessment of GOCE SGG data using along track interpolation, Advances in Geosciences, Vol. 1, 27-32.
  5. Bouman J., Koop R., Haagmans R., Mueller J., Sneeuw N. Tscherning C.C. and Visser P. (2003) Calibration and validation of GOCE gravity gradients, Paper presented at IUGG meeting, pp. 1-6
  6. Bouman J., Koop R., Tscherning C.C. and Visser P. (2004) Calibration of GOCE SGG data using high-low STT, terrestrial gravity data and global gravity field models, Journal of Geodesy, Vol. 78, 124-137.
  7. Chen J. Y. (1982) Methods for computing deflections of the vertical by modifying Vening-Meinesz' function, Bulletin Geod aesique, Vol. 56, 9-26.
  8. Denker H. (2002) Computation of gravity gradients for Europe for calibration/validation of GOCE data, In Proc. IAG International symposium "Gravity and Geoid" Tziavos I.N. (ed.) Aug. 26-30, 2002, Thessaloniki, Greece, p.287-292.
  9. Ellmann A. (2004) The geoid for the Baltic countries determined by the least squares modification of Stokes' formula, Doctoral thesis in Geodesy, Royal Institute of Technology, Stockholm, Sweden.
  10. Ellmann A. (2005) Computation of three stochastic modification of Stokes' formula for regional geoid determination, Computers & Geos cienecs, Vol. 31, 742-755.
  11. ESA (1999) Gravity Field and Steady-State Ocean Circulation Mission, ESA SP-1233(1), Report for mission selection of the four candidate earth explorer missions. ESA Publications Division, pp. 217, July 1999.
  12. Eshagh M. (2009a) On satellite gravity gradiometry, Doctoral dissertation in Geodesy, Royal Institute of Technology (KTH), Stockholm, Sweden
  13. Eshagh M. (2009b) Alternative expressions for gravity gradients in local-north oriented frame and tensor spherical harmonics, Acta Geophysica, Vol. 58, 215-243.10.2478/s11600-009-0048-z
  14. Eshagh M. (2009c) Least-squares modification of Stokes' formula with EGM08, Geodesy & Cartography, Vol. 35, No. 4, 111-117.10.3846/1392-1541.2009.35.111-117
  15. Eshagh M. (2009d) Spherical harmonic expansion of the atmospheric gravitational potential based on exponential and power models of atmosphere, Artificial Satellites, Vol. 43, 25-43.10.2478/v10018-009-0005-8
  16. Eshagh M. (2009e) Contribution of 1st-3rd order terms of a binomial expansion of topographic heights in topographic and atmospheric effects on satellite gravity gradiometric data, Artificial Satellites, Vol. 44, 21-31.10.2478/v10018-009-0016-5
  17. Eshagh M. (2009f) Complementary studies in Satellite Gravity Gradiometry, Postdoctoral report in Geodesy, TRITA-TEC-RR 09-006, Royal Institute of Technology (KTH), Stockholm, Sweden.
  18. Eshagh M. (2010a) Least-squares modification of extended Stokes' formula and its second-order radial derivative for validation of satellite gravity gradiometry data, Journal of Geodynamics, Vol. 49, 92-104.10.1016/j.jog.2009.11.003
  19. Eshagh M. (2010b) Semi-stochastic modification of second-order radial derivative of Abel-Poisson formula for generating satellite gravity gradiometry data, Advances in Space Research (Submitted).10.1016/j.asr.2010.10.003
  20. Eshagh M. (2010c) On the convergence of spherical harmonic expansion of topographic and atmospheric biases in gradiometry, Contributions in Geophysics and Geodesy, Vol. 39, 273-299.10.2478/v10126-009-0010-8
  21. Eshagh M. and Sjöberg L.E. (2008) Impact of topographic and atmospheric masses over Iran on validation and inversion of GOCE gradiometric data, Journal of the Earth & Space Physics, Vol. 34, 15-30.
  22. Eshagh M. and Sjöberg L.E. (2009a) Topographic and atmospheric effects on GOCE gradiometric data in a local north-oriented frame: A case study in Fennoscandia and Iran, Studia Geophysica et Geodaetica, Vol. 53, 61-80.10.1007/s11200-009-0004-z
  23. Eshagh M. and Sjöberg L.E. (2009b) Atmospheric effect on satellite gravity gradiometry data, Journal of Geodynamics, Vol. 47, 9-19.10.1016/j.jog.2008.06.001
  24. Haagmans R. Prijatna K. and Omang O. (2002) An alternative concept for validation of GOCE gradiometry results based on regional gravity, In Proc. Gravity and Geoid 2002, GG2002, August 26-30, Thessaloniki, Greece.
  25. Hagiwara Y. (1972) Truncation error formulas for the geoidal height and the deflection of the vertical, Bulletin Geod aesique, Vol. 106, 453-466.
  26. Heiskanen W. and Moritz H. (1967) Physical Geodesy. W.H Freeman and company, San Francisco and London.10.1007/BF02525647
  27. Hsu H.T. (1984) Kernel function approximation of Stokes' integral, In Proc. Local gravity field approximation (Ed. Schwarz P.K.), Aug. 21-Sep. 4, 1984, Beijing, China.
  28. Hwang C. (1995) A method for computing the coefficients in the product-sum formula of associated Legendre functions, Journal of Geodesy, Vol. 70, 110-116.
  29. Hwang C. (1998) Inverse Vening Meinesz formula and deflection-geoid formula: application to the prediction of gravity and geoid over the South China Sea, Journal of Geodesy, Vol. 72, 304-312.
  30. Kern M. and Haagmans R. (2004) Determination of gravity gradients from terrestrial gravity data for calibration and validation of gradiometric GOCE data, In Proc. Gravity, Geoid and Space missions, GGSM 2004, IAG International symposium, Portugal, August 30- September 3, pp. 95-100.
  31. Kern M., Preimesberger T., Allesch M., Pail. R., Bouman J. and Koop R. (2005) Outlier detection algorithms and their performance in GOCE gravity field processing, Journal of Geodesy, Vol. 78, 509-519.
  32. Mainville A. (1986) The altimetry-gravimetry problem using orthonormal base functions, Department of geodetic science and surveying, Report No. 373, 203 pp. The Ohio State University, Columbus.
  33. Molodensky M.S., Eremeev V.F. and Yurkina M.I. (1962) Methods for study of the external gravity field and figure of the Earth. Translated from Russian (1960), Israel program for scientific translation, Jerusalem.
  34. Mueller J. (2003) GOCE gradients in various reference frames and their accuracies, Advances in Geosciences, Vol. 1, 33-38.
  35. Mueller J., Denker H., Jarecki F. and Wolf K.I. (2004) Computation of calibration gradients and methods for in-orbit validation of gradiometric GOCE data, In Proc. Second international GOCE user workshop "Goce, The Geoid and Oceanography", ESA-ESRIN, Frascati, Italy, 8-10 March 2004.
  36. Neyman Yu. M. Li J. and Liu Q. (1996) Modification of Stokes and Vening-Meinesz formulas for the inner zone of arbitrary shape by minimization of upper bound truncation errors, Journal of Geodesy, Vol. 70, 410-418.
  37. Pail R. (2003) Local gravity field continuation for the purpose of in-orbit calibration of GOCE SGG observations, Advances in Geosciences, Vol. 1, 11-18
  38. Paul M.K. (1973) A method of evaluating the truncation error coefficients for geoidal height, Bulletin Geod aesique, Vol. 110, 413-425.
  39. Pavlis N.K. and Holmes S.A. (2006) A preliminary earth gravitational model to degree 2160, Paper presented at the IAG International Symposium on Gravity, Geoid and Space Missions 2004, GGSM2004, Porto, Portugal August 30 - September 3, 2004
  40. Petrovskaya M.S. and Vershkov A.N. (2006) Non-singular expressions for the gravity gradients in the local north-oriented and orbital reference frames, Journal of Geodesy, Vol. 80, 117-127.
  41. Reed G.B. (1973) Application of kinematical geodesy for determining the shorts wavelength component of the gravity field by satellite gradiometry, Ohio state University, Dept. of Geod Science, Rep. No. 201, Columbus, Ohio.
  42. Sjöberg L.E. (1980) Least-squares combination of satellite harmonics and integral formulas in physical geodesy, Gerlands Beitr. Geophysik Leipzig, Vol. 89, No. 5, 371-377.
  43. Sjöberg L.E. (1981) Least-squares combination of terrestrial and satellite data in physical geodesy, Annual Geophysics, Vol. 37, 25-30.
  44. Sjöberg L.E. (1984a) Least-Squares modification of Stokes' and Vening-Meinez' formula by accounting for truncation and potential coefficients errors. Manuscripta Geodaetica, Vol. 9:209-229.
  45. Sjöberg L.E. (1984b) Least- squares modification of Stokes' and Vening Meinesz' formulas by accounting for errors of truncation, potential coefficients and gravity data, Report No. 27, Department of Geodesy, Uppsala.
  46. Sjöberg L.E. (1991) Refined least-squares modification of Stokes' formula, Manuscripta Geodaetica, Vol. 16, 367-375.
  47. Sjöberg L.E. (2003) A general model for modifying Stokes' formula and its leastsquares solution, Journal of Geodesy, Vol. 77, 459-464.
  48. Tóth G., Földváry L., Tziavos I. and Adam J. (2004) Upward/downward continuation of gravity gradients for precise geoid determination, Proc. Second International GOCE user workshop "GOCE, The Geoid and Oceanography", ESA-ESRIN, Frascati, Italy, 8-10 March 2004.
  49. Tóth G., Földváry L., Tziavos I. and Adam J. (2006) Upward/downward continuation of gravity gradients for precise geoid determination, Acta Geodaetica Geophysica Hungarica, Vol. 41, 21-30.
  50. Tóth G., Földváry L. and Tziavos I. N. (2007) Practical aspects of upward/downward continuation of gravity gradients, In proc. "The 3rd International GOCE user workshop", ESA-ESRIN, Frascati, Italy, 6-8 Nov. 2006 (ESA SP-627, January 2007).
  51. Tscherning C.C. and Rapp R. (1974) Closed covariance expressions for gravity anomalies, geoid undulations and deflections of vertical implied by anomaly degree variance models. Rep. 355. Dept. Geod. Sci. Ohio State University, Columbus, USA.
  52. Tscherning C.C., Veicherts M. and Arabelos D. (2006) Calibration of GOCE gravity gradient data using smooth ground gravity, In Proc. GOCINA workshop, Cahiers de center European de Geodynamique et de seismilogie, Vol. 25, pp. 63-67, Luxenburg.
  53. Tziavos I.N. and Andritsanos V.D. (1998) Improvement in the computation of deflection of the vertical by FFT, Physics and Chemistry of the Earth, Vol. 23, 71-75.
  54. Wenzel H.G. (1981) Zur Geoidbestimmung durch kombination von schwereanomalien und einem kugelfuncationsmodell mit hilfe von integralformeln. Zeitschrift fur Geodasie, Geoinformation und Landmanagement, Vol. 106, No. 3, 102-111.
  55. Wolf K. I. (2007) Kombination globaler potentialmodelle mit terresrischen schweredaten fur die berechnung der zweiten ableitungen des gravitationspotentials in satellitenbahnhohe, PhD thesis, University of Hannover, Germany.
  56. Zielinsky J.B. and Petrovskaya M.S. (2003) The possibility of the calibration/validation of the GOCE data with the balloon-borne gradiometer, Advances in Geosciences, Vol. 1, 149-153.
  57. Ågren J. (2004) Regional geoid determination methods for the era of satellite gravimetry, Numerical investigations using synthetic Earth gravity models, Doctoral thesis in Geodesy, Royal Institute of Technology, Stockholm, Sweden.
DOI: https://doi.org/10.2478/v10018-009-0024-5 | Journal eISSN: 2083-6104 | Journal ISSN: 1509-3859
Language: English
Page range: 103 - 129
Published on: Apr 26, 2010
Published by: Polish Academy of Sciences, Space Research Centre
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2010 M. Eshagh, published by Polish Academy of Sciences, Space Research Centre
This work is licensed under the Creative Commons License.

Volume 44 (2009): Issue 4 (December 2009)