Have a personal or library account? Click to login
Insight into the Fourier Transform Band Pass Filtering Technique Cover

Insight into the Fourier Transform Band Pass Filtering Technique

Open Access
|Aug 2009

References

  1. Bremaud P. (2002) Mathematical Principles of Signal Processing: Fourier and Wavelet Analysis, Springer Verlag Inc., New York.
  2. Brillinger D.R. (1975) Time Series — Data Analysis and Theory, Holt, Rinehart and Winston Inc., New York.
  3. Candès E.J., Charlton Ph.R., Helgason H. (2008) Detecting Highly Oscillatory Signals by Chirplet Path Pursuit, Applied and Computational Harmonic Analysis, Vol. 24, No. 1, 14-40.
  4. Fabert O. (2004) Effiziente Wavelet Filterung mit hoher Zeit-Frequenz-Auflösung, Veröffentlichungen der Deutschen Geodätischen Kommission, Reihe A — Theoretische Geodäsie, Heft 119, Verlag der Bayerischen Akademie der Wissenschaften, München.
  5. Fabert O., Schmidt M. (2003) Wavelet Filtering with High Time-Frequency Resolution and Effective Numerical Implementation Applied on Polar Motion, Artificial Satellites — Journal of Planetary Geodesy, Vol. 38, No. 1, 3-13.
  6. Forbes A.M.G. (1988) Fourier Transform Filtering: A Cautionary Note, Journal of Geophysical Research, Vol. 93, No. C6, 6958-6962.
  7. Gasquet C., Witomski P. (1999) Fourier Analysis and Applications — Filtering, Numerical Computation, Wavelets, Springer Verlag Inc., New York.
  8. Gibson P.C., Lamoureux M.P., and Margrave G.F. (2006) Letter to the Editor: Stockwell and Wavelet Transforms, The Journal of Fourier Analysis and Applications, Vol. 12, Issue 6, 713-721.
  9. Hasan T. (1983) Complex Demodulation: Some Theory and Applications, In Brillinger D.R. and Krishnaiah P.R. (Editors), Handbook of Statistics, Vol. 3 — Time Series in the Frequency Domain, Elsevier Science Publishers, Amsterdam, 125-156.
  10. Hoggar S.D. (2006) Mathematics of Digital Images — Creation, Compression, Restoration, Recognition, Cambridge University Press, Cambridge.10.1017/CBO9780511810787
  11. Kołaczek B. (1992) Variations of Short Periodical Oscillations of Polar Motion with Periods Ranging from 10-140 Days, Report No. 419, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, Ohio, USA.
  12. Kołaczek B. and Kosek W. (1993) Variations of 80-120 Days Oscillations of Polar Motion and Atmospheric Angular Momentum, Proceedings of the 7th International Symposium — Geodesy and Physics of the Earth, IAG Symposium No. 112, Potsdam, Germany, 5-10 October 1992, Edited by H. Montag and Ch. Reigber, Springer Verlag, 439-442.
  13. Koopmans L.H. (1974) Spectral Analysis of Time Series, Academic Press, New York.
  14. Kosek W. (1995) Time Variable Band Pass Filter Spectra of Real and Complex-Valued Polar Motion Series, Artificial Satellites — Planetary Geodesy, Vol. 30, No. 1, 27-43.
  15. Kosek W. (2004) Possible Excitation of the Chandler Wobble by Variable Geophysical Annual Cycle, Artificial Satellites — Journal of Planetary Geodesy, Vol. 39, No. 2, 135-145.
  16. Kosek W., Kaczkowski J. (1994) Short Periodic Oscillations in x and y Pole Coordinates of the SLR and VLBI Techniques Detected After Filtering with the Kalman Filter, Proceedings of the 3rd Orlov Conference — Study of the Earth as Planet by Methods of Astronomy, Astrophysics and Geodesy, Odessa, 1992, Main Astronomical Observatory, Kiev, 288-297.
  17. Kosek W., Nastula J., Kołaczek B. (1995) Variability of Polar Motion Oscillations with Periods from 20 to 150 Days in 1979-1991, Bulletin Géodésique, Vol. 69, No. 4, 308-319.
  18. Kosek W., Popiński W. (1999) Comparison of Spectro-Temporal Analysis Methods on Polar Motion and its Atmospheric Excitation, Artificial Satellites — Journal of Planetary Geodesy, Vol. 34, No. 2, 65-75.
  19. Kulesh M., Holschneider M., Diallo M.S. (2008) Geophysical Wavelet Library: Applications of the Continuous Wavelet Transform to the Polarization and Dispersion Analysis of Signals, Computers & Geosciences, Vol. 34, No. 12, 1732-1752.
  20. Nastula J., Korsun A., Kołaczek B., Kosek W., Hozakowski W. (1993) Variations of the Chandler and Annual Wobbles of Polar Motion in 1846-1988 and their Prediction, Manuscripta Geodaetica, Vol. 18, 131-135.
  21. Newland D.E. (1993) Harmonic Wavelet Analysis, Proceedings of the Royal Society of London, Series A, Vol. 443, 203-225.
  22. Newland D.E. (1994) Harmonic and Musical Wavelets, Proceedings of the Royal Society of London, Series A, Vol. 444, 605-620.
  23. Newland D.E. (1998) Time-Frequency and Time-Scale Signal Analysis by Harmonic Wavelets, In Procházka A., Uhliř J., Rayner P.J., Kingsbury N.G. (Editors), Signal Analysis and Prediction, Birkhäuser, Boston, 3-26.
  24. Pan Ch. (1998) Spectral Ringing Suppression and Optimal Windowing for Attenuation and Q Measurements, Geophysics, Vol. 63, No. 2, 632-636.
  25. Pan Ch. (2001) Gibbs Phenomenon Removal and Digital Filtering Directly through the Fast Fourier Transform, IEEE Transactions on Signal Processing, Vol. 49, No. 2, 444-448.
  26. Park J. (1992) Envelope Estimation for Quasi-Periodic Geophysical Signals in Noise: A Multi-taper Approach, In Walden A.T. and Guttorp P. (Editors), Statistics in the Environmental and Earth Sciences, London, 189-219.
  27. Popiński W. (1997) On Consistency of Discrete Fourier Analysis of Noisy Time Series, Artificial Satellites — Journal of Planetary Geodesy, Vol. 32, No. 3, 131-142.
  28. Popiński W., Kosek W. (1995) The Fourier Transform Band Pass Filter and its Application for Polar Motion Analysis, Artificial Satellites — Planetary Geodesy, Vol. 30, No. 1, 9-25.
  29. Popiński W., Kosek W. (2000) Comparison of Various Spectro-Temporal Coherence Functions between Polar Motion and Atmospheric Excitation Functions, Artificial Satellites — Journal of Planetary Geodesy, Vol. 35, No. 4, 191-207.
  30. Popiński W., Kosek W. (1999) Spectral Analysis of Sea Surface Topography Observed by TOPEX/POSEIDON Altimetry Using Two-Dimensional Fourier Transform, Report Nr 40 — Space Research Centre PAS, Warsaw 1999.
  31. Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T. (1992) Numerical Recipes — The Art of Scientific Computing, Cambridge University Press, Cambridge.
  32. Sejdić E., Djurović I. and Jiang J. (2009) Time-Frequency Feature Representation Using Energy Concentration: An Overview of Recent Advances, Digital Signal Processing, Vol. 19, Nr. 1, 153-183.
  33. Singleton R.C. (1969) An Algorithm for Computing the Mixed Radix Fast Fourier Transform, IEEE Transactions on Audio and Electroacoustics, Vol. 17, No. 2, 93-103.
  34. Speed T.P. (1985) Some Practical and Statistical Aspects of Filtering and Spectrum Estimation, In Price J. F. (Editor), Fourier Techniques and Applications, Plenum Press, New York, 101-118.10.1007/978-1-4613-2525-3_6
  35. Stockwell R.G. (2007) Why to Use the S-Transform?, In Fields Institute Communications — Vol. 52 — Pseudo-differential Operators: Partial Differential Equations and Time-Frequency Analysis, Edited by L. Rodino, B.-W. Schulze, M.W. Wong, 279-309.
  36. Stockwell R.G., Mansinha L., and Lowe R.P. (1996) Localization of the Complex Spectrum: The S Transform, IEEE Transactions on Signal Processing, Vol. 44, No. 4, 998-1001.
  37. Van Milligen B.Ph. (1999) Wavelets, Non-linearity and Turbulence in Fusion Plasmas, In Van den Berg J.C. (Editor), Wavelets in Physics, Cambridge University Press, Cambridge, 227-262.
DOI: https://doi.org/10.2478/v10018-009-0012-9 | Journal eISSN: 2083-6104 | Journal ISSN: 1509-3859
Language: English
Page range: 129 - 141
Published on: Aug 26, 2009
Published by: Polish Academy of Sciences, Space Research Centre
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2009 Waldemar Popiński, published by Polish Academy of Sciences, Space Research Centre
This work is licensed under the Creative Commons License.

Volume 43 (2008): Issue 4 (December 2008)