Have a personal or library account? Click to login
Optimization-based approach to path planning for closed chain robot systems Cover

Optimization-based approach to path planning for closed chain robot systems

Open Access
|Dec 2011

References

  1. Abbasi-Yadkori, Y., Modayil, J. and Szepesvari, C. (2010). Extending rapidly-exploring random trees for asymptotically optimal anytime motion planning, IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, pp. 127-132.
  2. Asfour, T., Gyarfas, F., Azad, P. and Dillmann, R. (2006). Imitation learning of dual-arm manipulation tasks in humanoid robots, IEEE/RAS International Conference on Humanoid Robots (Humanoids 2006), Genoa, Italy, pp. 40-47.
  3. Bell, B. M. and Burke, J. V. (2008). Algorithmic differentiation of implicit functions and optimal values, in C. H. Bischof, H. M. Bücker, P. D. Hovland, U. Naumann and J. Utke (Eds.), Advances in Automatic Differentiation, Springer, Berlin/Heidelberg, pp. 67-77.10.1007/978-3-540-68942-3_7
  4. Benson, H. Y., Shanno, D. F. and Vanderbei, R. J. (2001). Interior-point methods for nonconvex nonlinear programming: Filter methods and merit functions, Technical Report ORFE-00-06, Operations Research and Financial Engineering, Princeton University, Princeton, NJ.
  5. Benson, H. Y., Shanno, D. F. and Vanderbei, R. J. (2002). A comparative study of large-scale nonlinear optimization algorithms, Technical Report ORFE-01-04, Operations Research and Financial Engineering, Princeton University, Princeton, NJ.
  6. Błaszczyk, J., Karbowski, A. and Malinowski, K. (2007). Object library of algorithms for dynamic optimization problems: Benchmarking SQP and nonlinear interior point methods, International Journal of Applied Mathematics and Computer Science 17(4): 515-537, DOI: 10.2478/v10006-007- 0043-y.
  7. Błaszczyk, J. P. (2007). Object Library of Algorithms for Dynamic Optimization: A Study on Effectiveness of Sequential Quadratic Programming and Nonlinear Interior Point Methods, Ph.D. thesis, Warsaw University of Technology, Warsaw, (in Polish).
  8. Byrd, R. H., Gilbert, J. C. and Nocedal, J. (2000). A trust region method based on interior point techniques for nonlinear programming, Mathematical Programming 89(1): 149-185.10.1007/PL00011391
  9. Byrd, R. H., Hribar, M. E. and Nocedal, J. (1999). An interior point algorithm for large scale nonlinear programming, SIAM Journal on Optimization 9(4): 877-900.10.1137/S1052623497325107
  10. Canny, J. (1988). The Complexity of Robot Motion Planning, MIT Press, Cambridge, MA.
  11. Cortés, J., Siméon, T. and Laumond, J.-P. (2002). A random loop generator for planning the motions of closed kinematic chains using PRM methods, IEEE International Conference on Robotics and Automation ICRA, Washington, DC, USA, pp. 2141-2146.
  12. Daniel, J. (1971). Approximate Minimisation of Functionals, Prentice Hall, Englewood Cliffs, NJ.
  13. de Boor, C. (1978). Practical Guide to Splines, Springer, New York, NY/Heidelberg.10.1007/978-1-4612-6333-3
  14. Dolan, E. D. and Moré, J. J. (2002). Benchmarking optimization software with performance profiles, Mathematical Programming 91(2): 201-213.10.1007/s101070100263
  15. Fiacco, A. V. and McCormick, G. P. (1968). Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley and Sons, New York, NY/London.
  16. Fiser, A., Do, R. and Sali, A. (2000). Modeling of loops in protein structure, Protein Science 9(9): 1753-1773.10.1110/ps.9.9.1753214471411045621
  17. Fletcher, R. and Leyffer, S. (2002). Nonlinear programming without a penalty function, Mathematical Programming 91(2): 239-269.10.1007/s101070100244
  18. Haegele, M., Nilsson, K. and Pires, J. N. (2008). Springer Handbook of Robotics, Springer, Berlin/Heidelberg.
  19. Han, L. and Amato, N. (2000). A kinematics-based probabilistic roadmap method for closed chain systems, Workshop on Algoritmic Foundations of Robotics, Dartmouth, Hanover, NH, USA, pp. 233-245.
  20. Han, L., Rudolph, L., Blumenthal, J. and Valodzin, I. (2006). Stratified deformation space and path planning for a planar closed chain with revolute joints, in S. Akella, N. Amato, W. Huang and B. Mishra (Eds.), International Workshop on Algorithmic Foundations of Robotics WAFR, Springer Tracts in Advanced Robotics, Vol. 47, Springer, New York, NY, pp. 235-250.
  21. Kallmann, M., Aubel, A., Abaci, T. and Thalmann, D. (2003). Planning collision-free reaching motions for interactive object manipulation and grasping, Eurographics 22(3): 313-322.10.1111/1467-8659.00678
  22. Kanehiro, F., Lamiraux, F., Kanoun, O., Yoshida, E. and Laumond, J.-P. (2008). A local collision avoidance method for non-strictly convex polyhedra, Proceedings of Robotics: Science and Systems (RSS) IV, Zurich, Switzerland, pp. 151-158.
  23. Kavraki, L. E., Svestka, P., Latombe, J.-C. and Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces, IEEE Transactions on Robotics and Automation 12(4): 566-580.10.1109/70.508439
  24. Kuffner, J. J. and LaValle, S. M. (2000). RRT-connect: An efficient approach to single-query path planning, IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, pp. 995-1001.
  25. Latombe, J.-C. (1991). Robot Motion Planning, Kluwer, Boston, MA.10.1007/978-1-4615-4022-9
  26. LaValle, S. (2006). Planning Algorithms, Cambridge University Press, Cambridge.10.1017/CBO9780511546877
  27. Liu, G. and Trinkle, J. (2005). Complete path planning for planar closed chains among point obstacles, Proceedings of Robotics: Science and Systems (RSS) I, Cambridge, MA, USA, pp. 33-40.
  28. Merlet, J. (2000). Parallel Robots, Kluwer, Dordrecht.10.1007/978-94-010-9587-7
  29. Morales, J. L., Nocedal, J., Waltz, R. A., Liu, G. and Goux, J.-P. (2001). Assessing the potential of interiormethods for nonlinear optimization, Technical Report OTC 2001/4, Optimization Technology Center, Northwestern University, Evanston, IL.
  30. Ratliff, N., Zucker, M., Bagnell, J. A. and Srinivasa, S. (2009). CHOMP: Gradient optimization techniques for efficient motion planning, IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, pp. 489-494.
  31. Szynkiewicz, W. (2003). Motion planning for multi-robot systems with closed kinematic chains, 9th IEEE International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 779-786.
  32. Szynkiewicz, W. and Gosiewski, A. (1995). Motion space analysis and trajectory planning for dual-arm system, 2nd International Symposium on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 503-510.
  33. Tang, X., Thomas, S. and Amato, N. (2007). Planning with reachable distances: Fast enforcement of closure constraints, IEEE International Conference on Robotics and Automation ICRA, Rome, Italy, pp. 2694-2699.
  34. Tits, A. L.,Wächter, A., Bakhtiari, S., Urban, T. J. and Lawrence, C. (2002). A primal-dual interior-point method for nonlinear programming with strong global and local convergence properties, Technical Report TR 2002-29, Institute for Systems Research, University of Maryland, College Park, MD.
  35. Trinkle, J. and Milgram, R. (2002). Complete path planning for closed kinematic chains with spherical joints, International Journal of Robotics Research 21(9): 773-789.10.1177/0278364902021009119
  36. Ulbrich, M., Ulbrich, S. and Vicente, L. N. (2004). A globally convergent primal-dual interior-point filter method for nonlinear programming, Mathematical Programming 100(2): 379-410.10.1007/s10107-003-0477-4
  37. Vanderbei, R. J. and Shanno, D. F. (1997). An interior-point algorithm for non-convex nonlinear programming, Technical Report SOR-97-21, Statistics and Operations Research, Princeton University, Princeton, NJ.
  38. Wächter, A. (2002). An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in Process Engineering, Ph.D. dissertation, Carnegie Mellon University, Pittsburgh, PA.
  39. Wächter, A. and Biegler, L. T. (2000). Failure of global convergence for a class of interior point methods for nonlinear programming, Mathematical Programming 88(3): 565-574.10.1007/PL00011386
  40. Wächter, A. and Biegler, L. T. (2005). Line search filter methods for nonlinear programming: Motivation and global convergence, SIAM Journal on Optimization 16(1): 1-31.10.1137/S1052623403426556
  41. Wächter, A. and Biegler, L. T. (2006). On the implementation of a primal-dual interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming 106(1): 25-57.10.1007/s10107-004-0559-y
  42. Waltz, R. A. and Plantenga, T. (2006). KNITRO 5.0 User's Manual, Ziena Optimization, Inc., http://www.ziena.com/docs/knitroman.pdf. http://www.ziena.com/docs/knitroman.pdf
  43. Yakey, J., LaValle, S. and Kavraki, L. (2001). Randomized path planning for linkages with closed kineamtic chains, IEEE Transactions on Robotics and Automation 17(6): 951-958.10.1109/70.976030
  44. Yershova, A. and LaValle, S. (2009). Motion planning for highly constrained spaces, in K. R. Kozłowski (Ed.) Robot Motion and Control 2009, Springer, Berlin/Heidelberg, pp. 297-306.10.1007/978-1-84882-985-5_27
  45. Zefran, M. and Kumar, V. (1997). A variational calculus framework for motion planning, IEEE International Conference on Robotics and Automation ICRA, Albuquerque, NM, USA, pp. 415-420.
  46. Zhang, J. and Knoll, A. (1995). An enhanced optimization approach for generating smooth robot trajectories in the presence of obstacles, Proceedings of the European Chinese Automation Conference, London, UK, pp. 263-268.
  47. Zieliński, C. and Winiarski, T. (2010). Motion generation in the MRROC++ robot programming framework, International Journal of Robotics Research 29(4): 386-413.10.1177/0278364909348761
DOI: https://doi.org/10.2478/v10006-011-0052-8 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 659 - 670
Published on: Dec 21, 2011
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2011 Wojciech Szynkiewicz, Jacek Błaszczyk, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 21 (2011): Issue 4 (December 2011)