Have a personal or library account? Click to login
Convergence method, properties and computational complexity for Lyapunov games Cover

Convergence method, properties and computational complexity for Lyapunov games

Open Access
|Jun 2011

References

  1. Axelrod, R. (1984). The Evolution of Cooperation, Basic Books, New York, NY.
  2. Bernheim, B.D. (1984). Rationalizable strategic behavior, Econometrica52(4): 1007-1028.10.2307/1911196
  3. Chen, X. and Deng, X. (2006). Setting the complexity of 2-player Nash equilibrium, Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006, Berkeley, CA, USA, pp. 261-270.
  4. Chen, X., Deng, X. and Tengand, S.-H. (2006). Computing Nash equilibria: Approximation and smoothed complexity, Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006, Berkeley, CA, USA, pp. 603-612.
  5. Clempner, J. (2006). Modeling shortest path games with Petri nets: A Lyapunov based theory, International Journal of Applied Mathematics and Computer Science16(3): 387-397.
  6. Daskalakis, C., Goldberg, P. and Papadimitriou, C. (2006a). The complexity of computing a Nash equilibrium, Proceedings of the 38th ACM Symposium on Theory of Computing, STOC 2006, Seattle, WA, USA, pp. 71-78.10.1145/1132516.1132527
  7. Daskalakis, C., Mehta, A. and Papadimitriou, C. (2006b). A note on approximate Nash equilibria, Proceedings of the 2nd Workshop on Internet and Network Economics, WINE 06, Patras, Greece, pp. 297-306.10.1007/11944874_27
  8. Fabrikant, A. and Papadimitriou, C. (2008). The complexity of game dynamics: BGP oscillations, sink equilibria, and beyond, Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, San Francisco, CA, USA, pp. 844-853.
  9. Fabrikant, A., Papadimitriou, C. and Talwar, K. (2004). The complexity of pure Nash equilibria, Proceedings of the 36th ACM Symposium on Theory of Computing, STOC 2006, Chicago, IL, USA, pp. 604-612.
  10. Goemans, M., Mirrokni, V. and Vetta, A. (2005). Sink equilibria and convergence, Proceedings of the 46th IEEE Symposium on Foundations of Computer Science, FOCS 2008, Pittsburgh, PA, USA, pp. 142-154.
  11. Griffin, T.G. and Shepherd F.B. and Wilfong, G.W. (2002). The stable paths problem and interdomain routing, IEEE/ACM Transactions on Networking10(2): 232-243.10.1109/90.993304
  12. Kakutani, S. (1941). A generalization of Brouwer's fixed point theorem, Duke Journal of Mathematics8(3): 457-459.10.1215/S0012-7094-41-00838-4
  13. Kontogiannis, S., Panagopoulou, P. and Spirakis, P. (2006). Polynomial algorithms for approximating nash equilibria of bimatrix games, Proceedings of the 2ndWorkshop on Internet and Network Economics, WINE 06, Patras, Greece, pp. 286-296.
  14. Lakshmikantham, V., Matrosov, V. and Sivasundaram, S. (1991). Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems, Kluwer Academic Publication, Dordrecht.10.1007/978-94-015-7939-1
  15. Lipton, R.J., Markakis, E. and Mehta, A. (2003). Playing large games using simple strategies, Proceedings of the 4th ACM Conference on Electronic Commerce, EC 2003, San Diego, CA, USA, pp. 36-41.
  16. Mirrokni, V. and Vetta, A. (2004). Convergence issues in competitive games, Proceedings of the 7th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2004, Cambridge, MA, USA, pp. 183-194.
  17. Moulin, H. (1984). Dominance solvability and Cournot stability, Mathematical Social Sciences7(1): 83-102.10.1016/0165-4896(84)90090-8
  18. Myerson, R. B. (1978). Refinements of the Nash equilibrium concept, International Journal of Game Theory7(2): 73-80.10.1007/BF01753236
  19. Nash, J. (1951). Non-cooperative games, Annals of Mathematics54(2): 287-295.10.2307/1969529
  20. Nash, J. (1996). Essays on Game Theory, Elgar, Cheltenham.
  21. Nash, J. (2002). The Essential John Nash, H.W. Kuhn and S. Nasar, Princeton, NJ.10.1515/9781400884087
  22. Pearce, D. (1984). Rationalizable strategic behavior and the problem of perfection, Econometrica52(4): 1029-1050.10.2307/1911197
  23. Poznyak, A.S. (2008). Advance Mathematical Tools for Automatic Control Engineers, Vol. 1: Deterministic Techniques, Elsevier, Amsterdam.
  24. Poznyak, A.S., Najim, K. and Gomez-Ramirez, E. (2000). Self-Learning Control of Finite Markov Chains, Marcel Dekker, New York, NY.
  25. Selten, R. (1975). Reexamination of the perfectness concept for equilibrium points in extensive games, International Journal of Game Theory4(1): 25-55.10.1007/BF01766400
  26. Tarapata, Z. (2007). Selected multicriteria shortest path problems: An analysis of complexity, models and adaptation of standard algorithms, International Journal of Applied Mathematics and Computer Science17(2): 269-287, DOI: 10.2478/v10006-007-0023-2.10.2478/v10006-007-0023-2
  27. Topkis, D. (1979). Equilibrium points in nonzero-sum n-persons submodular games, SIAM Journal of Control and Optimization17(6): 773-787.10.1137/0317054
  28. Toth, B. and Kreinovich, V. (2009). Verified methods for computing Pareto sets: General algorithmic analysis, International Journal of Applied Mathematics and Computer Science19(3): 369-380, DOI: 10.2478/v10006/009-0031-5.
DOI: https://doi.org/10.2478/v10006-011-0026-x | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 349 - 361
Published on: Jun 22, 2011
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2011 Julio Clempner, Alexander Poznyak, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 21 (2011): Issue 2 (June 2011)