Have a personal or library account? Click to login
Convergence method, properties and computational complexity for Lyapunov games Cover

Convergence method, properties and computational complexity for Lyapunov games

Open Access
|Jun 2011

Abstract

We introduce the concept of a Lyapunov game as a subclass of strictly dominated games and potential games. The advantage of this approach is that every ergodic system (repeated game) can be represented by a Lyapunov-like function. A direct acyclic graph is associated with a game. The graph structure represents the dependencies existing between the strategy profiles. By definition, a Lyapunov-like function monotonically decreases and converges to a single Lyapunov equilibrium point identified by the sink of the game graph. It is important to note that in previous works this convergence has not been guaranteed even if the Nash equilibrium point exists. The best reply dynamics result in a natural implementation of the behavior of a Lyapunov-like function. Therefore, a Lyapunov game has also the benefit that it is common knowledge of the players that only best replies are chosen. By the natural evolution of a Lyapunov-like function, no matter what, a strategy played once is not played again. As a construction example, we show that, for repeated games with bounded nonnegative cost functions within the class of differentiable vector functions whose derivatives satisfy the Lipschitz condition, a complex vector-function can be built, where each component is a function of the corresponding cost value and satisfies the condition of the Lyapunov-like function. The resulting vector Lyapunov-like function is a monotonic function which can only decrease over time. Then, a repeated game can be represented by a one-shot game. The functionality of the suggested method is successfully demonstrated by a simulated experiment.

DOI: https://doi.org/10.2478/v10006-011-0026-x | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 349 - 361
Published on: Jun 22, 2011
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2011 Julio Clempner, Alexander Poznyak, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 21 (2011): Issue 2 (June 2011)