References
- Aistleitner, C., Brauchart, J. S., and Dick, J. Point sets on the sphere S2 with small spherical cap discrepancy. Discrete & Computational Geometry (2012).
- Bakhshizadeh, M., Kamalinejad, A., and Latifi, M. A practical algorithm to calculate cap discrepancy. arXiv:2010.10454 (2020).
- Brauchart, J., Saff, E., Sloan, I., and Womersley, R. QMC designs: Optimal order Quasi Monte Carlo integration schemes on the sphere. Mathematical Computation 83 (2014), 2821–2851.
- Clarke, F. Optimization and Nonsmooth Analysis. Wiley New York, 1983.
- Etayo, U. Spherical cap discrepancy of the diamond ensemble. Discrete & Computational Geometry 66 (2021), 1218–1238.
- Grabner, P. J., and Tichy, R. F. Spherical designs, discrepancy and numerical integration. Mathematics of Computation 60 (1993), 327–336.
- Heitsch, H., and Henrion, R. An enumerative formula for the spherical cap discrepancy. Journal of Computational and Applied Mathematics 390 (2021), 113409.
- Heitsch, H., and Henrion, R. On the Lipschitz continuity of the spherical cap discrepancy around generic point sets. WIAS Preprint No. 3192 (2025).
- Li, S. Concise formulas for the area and volume of a hyperspherical cap. Asian Journal of Mathematics & Statistics 4 (2011), 66–70.
- Magnus, J. R., and Neudecker, H. Matrix Differential Calculus with Applications in Statistics and Econometrics. John Wiley, 1999.
- Mordukhovich, B. S. Variational Analysis and Generalized Differentiation I. Springer Berlin Heidelberg, 2006.
- Nguyen, K., Bariletto, N., and Ho, N. Quasi-Monte Carlo for 3d sliced wasserstein. arXiv:2309.11713 (2023).
- Scholtes, S. Introduction to Piecewise Differentiable Equations. Springer New York, 2012.
- van Ackooij, W., and Henrion, R. Gradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian-like distributions. SIAM Journal on Optimization 24 (2014), 1864–1889.
- Ziegler, G. M. Lectures on polytopes, vol. 152 of Graduate texts in mathematics. Springer-Verlag, 1995.