Have a personal or library account? Click to login
On the Lipschitz Continuity of the Spherical Cap Discrepancy around Generic Point Sets Cover

On the Lipschitz Continuity of the Spherical Cap Discrepancy around Generic Point Sets

By: Holger Heitsch and  René Henrion  
Open Access
|Dec 2025

References

  1. Aistleitner, C., Brauchart, J. S., and Dick, J. Point sets on the sphere S2 with small spherical cap discrepancy. Discrete & Computational Geometry (2012).
  2. Bakhshizadeh, M., Kamalinejad, A., and Latifi, M. A practical algorithm to calculate cap discrepancy. arXiv:2010.10454 (2020).
  3. Brauchart, J., Saff, E., Sloan, I., and Womersley, R. QMC designs: Optimal order Quasi Monte Carlo integration schemes on the sphere. Mathematical Computation 83 (2014), 2821–2851.
  4. Clarke, F. Optimization and Nonsmooth Analysis. Wiley New York, 1983.
  5. Etayo, U. Spherical cap discrepancy of the diamond ensemble. Discrete & Computational Geometry 66 (2021), 1218–1238.
  6. Grabner, P. J., and Tichy, R. F. Spherical designs, discrepancy and numerical integration. Mathematics of Computation 60 (1993), 327–336.
  7. Heitsch, H., and Henrion, R. An enumerative formula for the spherical cap discrepancy. Journal of Computational and Applied Mathematics 390 (2021), 113409.
  8. Heitsch, H., and Henrion, R. On the Lipschitz continuity of the spherical cap discrepancy around generic point sets. WIAS Preprint No. 3192 (2025).
  9. Li, S. Concise formulas for the area and volume of a hyperspherical cap. Asian Journal of Mathematics & Statistics 4 (2011), 66–70.
  10. Magnus, J. R., and Neudecker, H. Matrix Differential Calculus with Applications in Statistics and Econometrics. John Wiley, 1999.
  11. Mordukhovich, B. S. Variational Analysis and Generalized Differentiation I. Springer Berlin Heidelberg, 2006.
  12. Nguyen, K., Bariletto, N., and Ho, N. Quasi-Monte Carlo for 3d sliced wasserstein. arXiv:2309.11713 (2023).
  13. Scholtes, S. Introduction to Piecewise Differentiable Equations. Springer New York, 2012.
  14. van Ackooij, W., and Henrion, R. Gradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian-like distributions. SIAM Journal on Optimization 24 (2014), 1864–1889.
  15. Ziegler, G. M. Lectures on polytopes, vol. 152 of Graduate texts in mathematics. Springer-Verlag, 1995.
DOI: https://doi.org/10.2478/udt-2025-0011 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 224 - 254
Submitted on: Apr 8, 2025
|
Accepted on: May 30, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Holger Heitsch, René Henrion, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.