Have a personal or library account? Click to login
Temporal Central Limit Theorem for a Multidimensional Adding Machine Cover

Temporal Central Limit Theorem for a Multidimensional Adding Machine

Open Access
|Dec 2025

Abstract

Let p1,...,ps+1 be distinct primes and let Tpi be the von Neumann-Kakutani adding machine (1 ≤ is), T𝒫 (x)= (Tp1 (x1),...,Tps(xs)). Let yi ∈ (0, 1) be a ps+1-rational (1 ≤ is), 𝟙[0,y) the indicator function of the box [0,y1)×…×[0,ys). In this paper, we prove the following central limit theorem: k=-nn-1𝟙[0,y)(TPk(x)-2ny1y2ys)N(x)log2s/2NN(0,1) \frac{\sum_{k=-n}^{\,n-1}\mathbb{1}_{[0,y)}\!\left(T_{P}^{k}(\mathbf{x})- 2n\,y_{1}y_{2}\cdots y_{s}\right)}{\mathcal{H}_{N}(\mathbf{x})\,\log_{2}^{\,s/2} N}\xrightarrow{w} \mathcal{N}(0,1) when n is sampled uniformly from {1,...,N}, ℋN (x)∈[υ12] with some υ12 > 0, for almost all x ∈[0, 1)s. The main tool in the proof is the S-unit theorem and the theorem on linear forms in the logarithm.

DOI: https://doi.org/10.2478/udt-2025-0010 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 178 - 223
Submitted on: Oct 10, 2024
|
Accepted on: Jan 10, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Mordechay B. Levin, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.