Have a personal or library account? Click to login
Temporal Central Limit Theorem for a Multidimensional Adding Machine Cover

Temporal Central Limit Theorem for a Multidimensional Adding Machine

Open Access
|Dec 2025

References

  1. AVDEEVA, M.—CELLAROSI, F.—SINAI, YA. G.: Ergodic and statistical properties of B-free numbers, Teor. Veroyatn. Primen. 61 (2016), no. 4, 805–829; reprinted in Theory Probab. Appl. 61 (2017), no. 4, 569–589.
  2. AVILA, A.—DOLGOPYAT, D.—DURYEV, E.—SARIG, O.: The visits to zero of a random walk driven by an irrational rotation, Israel J. Math. 207 (2015). no. 2, 653–717.
  3. [3] BECK, J.: Randomness of n 2 \sqrt{2} mod 1 and a Ramsey property of the hyperbola. Sets, graphs and numbers (Budapest, 1991), Colloq. Math. Soc. Janos Bolyai, Vol. 60, North-Holland, Amsterdam, 1992, pp. 23–66,.
  4. BECK, J.: Randomness in lattice point problems, Discrete Math. 229 (2001), no. 1–3, 29–55.
  5. BECK, J.: Probabilistic Diophantine Approximation. Randomness in Lattice Point Counting. Springer Monographs in Mathematics. Springer, Cham, 2014.
  6. BECK, J.—CHEN, W. W. L.: Irregularities of Distribution. Cambridge Tracts in Mathematics, Vol. 89. Cambridge Univ. Press, Cambridge, 1987.
  7. BROMBERG, M.—ULCIGRAI, U.: A temporal central limit theorem for real-valued co-cycles over rotations, Ann. Inst. Henri Poincaré Probab. Stat. 54 (2018), no. 4, 2304–2334.
  8. BAKER, A.—WÜSTHOLZ, G.: Logarithmic Forms and Diophantine Geometry. New Mathematical Monographs, Vol. 9, Cambridge University Press, Cambridge, 2007.
  9. CONZE, J. P.—LE BORGNE, S.: On the CLT for rotations and BV functions, Ann. Math. Blaise Pascal 29 (2022), no. 1, 51–97.
  10. FAURE, H.—KRITZER, P.—PILLICHSHAMMER F.: From van der Corput to modern constructions of sequences for quasi-Monte Carlo rules, Indag. Math.(N.S.) 26 (2015), no. 5, 760–822.
  11. FRÜHWIRTH, L.—HAUKE, M.: On Birkhoff sums that satisfy no temporal distributional limit theorem for almost every irrational, Ann. H. Lebesgue 7 (2024), 251–265.
  12. DOLGOPYAT, D.—SARIG, O.: Temporal distributional limit theorems for dynamical systems, J. Stat. Phys. 166 (2017), no. 3–4, 680–713.
  13. DOLGOPYAT, D.—SARIG, O.: No temporal distributional limit theorem for a.e. irrational translation, Ann. H. Lebesgue 1 (2018), 127–148.
  14. DOLGOPYAT, D.—SARIG, O.: Quenched and annealed temporal limit theorems for circle rotations, Some aspects of the theory of dynamical systems: a tribute to Jean-Christophe Yoccoz. Vol. I. Astérisque no. 415 (2020), pp. 59–85.
  15. DURRETT, R.: Probability: Theory and Examples. Fourth edition, Cambridge Series in Statistical and Probabilistic Mathematics, Vol. 31. Cambridge University Press, Cambridge, 2010.
  16. EVERTSE, J. H.—SCHLICKEWEI, H. P.—SCHMIDT, W. M.: Linear equations in variables which lie in a multiplicative group, Ann. of Math. (2) 155 (2002), no. 3, 807–836.
  17. HALL, P.—HEYDE, C. C.: Martingale Limit Theory and its Application. Probability and Mathematical Statistics, Academic Press, Inc, [Harcourt Brace Jovanovich, Publishers], New York-London, 1980.
  18. KOROBOV, N. M.: Exponential sums and their applications. Translated from the 1989 Russian original by Yu. N. Shakhov. Mathematics and its Applications (Soviet Series), Vol. 80. Kluwer Academic Publishers Group, Dordrecht, 1992.
  19. LEVIN, M. B.: On the Gaussian limiting distribution of lattice points in a parallelepiped, Unif. Distrib. Theory 11 (2016), no. 2, 45–89.
  20. LEVIN, M. B.: On the upper bound of the Lp discrepancy of Halton’s sequence and the central limit theorem for Hammersley’s net, 280 (2024), no. 6, Part Series A, 1002–1029; On the upper bound of the Lp discrepancy of Halton’s sequence and the central limit theorem for Hammersley’s net II, J. Math. Sci. (N. Y.) 280 (2024), no. 6, Part Series A, 1030–1064.
  21. LEVIN, M. B.—MERZBACH, E.: Central limit theorems for the ergodic adding machine, Israel J. Math. 134 (2003), 61–92.
  22. NIEDERREITER, H.: Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 63. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.
  23. RAVOTTI, D.: Asymptotics and limit theorems for horocycle ergodic integralsàla Ratner. With an appendix by Emilio Corso, J. Éc. Polytech. Math. 10 (2023), 305–334.
DOI: https://doi.org/10.2478/udt-2025-0010 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 178 - 223
Submitted on: Oct 10, 2024
|
Accepted on: Jan 10, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Mordechay B. Levin, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.