Have a personal or library account? Click to login
On Jordan Double Sums and Related Summatory Functions Cover

On Jordan Double Sums and Related Summatory Functions

By: Sanying Shi and  Michel Weber  
Open Access
|Feb 2025

References

  1. BATEMAN, P.—DIAMOND, H. G.: Analytic Number Theory—An Introductory Course. Monographs in Number Theory, Vol. 1, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2004.
  2. BALASUBRAMANIAN, R.—LUCA, F.—RALAIVAOSAONA, D.: On the sum of the first n values of the Euler function,Acta Arith. 163 (2014), no. 3, 199–201.
  3. MCCARTHY, P. J.: Introduction to Arithmetical Functions. (Universitext), Springer-Verlag, New-York Inc., 1986.
  4. MONTGOMERY, H.—VAUGHAN, R.: Multiplicative Number Theory: I. Classical Theory. Cambridge Stud. Adv. Math. Vol. 97, Cambridge University Press, Cambridge, 2007
  5. SHAPIRO, H. N.: On a theorem of Selberg and generalization, Ann. of Math. 51 1950), no. 2. 485–497.
  6. TITCHMARSH, E. C.: The Theory of the Riemann-Zeta function. Second Edition (Edited and with a preface by D. R. Heath-Brown.) The Clarendon Press, Oxford University Press, New York, 1986.
  7. WILSON, B. M.: Proofs of some formulae enunciated by Ramanujan, Proc. London Math. Soc. 21 (1923), no. 2, 235–255.
DOI: https://doi.org/10.2478/udt-2023-0014 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 57 - 76
Submitted on: Nov 11, 2023
Accepted on: Dec 20, 2023
Published on: Feb 24, 2025
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Sanying Shi, Michel Weber, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.