Have a personal or library account? Click to login
Lower Bounds on the Largest Inhomogeneous Approximation Constant Cover

Lower Bounds on the Largest Inhomogeneous Approximation Constant

By: Bishnu Paudel and  Chris Pinner  
Open Access
|Feb 2025

Abstract

For a given irrational number α and a real number γ in (0, 1) one defines the two-sided inhomogeneous approximation constant M(α,γ):=lim| n |inf| n | nα-γ , M\left( {\alpha ,\gamma } \right): = \mathop {\lim }\limits_{\left| n \right| \to \infty } \,\,\inf \,\,\,\left| n \right|\left\| {n\alpha - \gamma } \right\|, and the case of worst inhomogeneous approximation for α ρ(α):=supγ{ m+lα:m,l }M(α,γ). \rho \left( \alpha \right): = \mathop {\sup }\limits_{\gamma \notin \left\{ {m + l\alpha :m,l \in \mathbb Z} \right\}} M\left( {\alpha ,\gamma } \right).

We are interested in lower bounds on ρ(α)in terms of R := lim infi→∞ ai, where the ai are the partial quotients in the negative (i.e., the ‘round-up’) continued fraction expansion of α. We obtain bounds for any R ≥ 3 which are best possible when R is even (and asymptotically precise when R is odd). In particular when R ≥ 3 ρ(α)163+8=118.3923, \rho \left( \alpha \right) \ge {1 \over {6\sqrt 3 + 8}} = {1 \over {18.3923 \ldots }}, and when R ≥ 4, optimally, ρ(α)143+2=18.9282, \rho \left( \alpha \right) \ge {1 \over {4\sqrt 3 + 2}} = {1 \over {8.9282 \ldots }},

DOI: https://doi.org/10.2478/udt-2023-0015 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 77 - 98
Submitted on: Nov 13, 2023
Accepted on: Dec 20, 2023
Published on: Feb 24, 2025
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Bishnu Paudel, Chris Pinner, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.