Have a personal or library account? Click to login
Optimizing Traffic Light Control using Enhanced DQN: Minimizing Waiting Time for Regular and Emergency Vehicles Cover

Optimizing Traffic Light Control using Enhanced DQN: Minimizing Waiting Time for Regular and Emergency Vehicles

Open Access
|Jun 2025

References

  1. Alsheikhy, A.A., Said, Y.F. and Shawly, T. (2024) A novel intelligent smart traffic system using a deep-learning architecture. Multimedia Tools and Applications, 83(13), 1-14. DOI:10.1007/s11042-023-17003-3.
  2. Ballis, H. and Dimitriou, L. (2020) Evaluation of reinforcement learning traffic signalling strategies for alternative objectives: Implementation in the network of Nicosia, Cyprus. Transport and Telecommunication Journal, 21(4), 295–302. DOI:10.2478/ttj-2020-0024.
  3. Cao, M., Li, V.O. and Shuai, Q. (2022) A gain with no pain: Exploring intelligent traffic signal control for emergency vehicles. IEEE Transactions on Intelligent Transportation Systems, 23(10), 17 899–17 909. DOI:10.1109/TITS.2022.3159714.
  4. Hohenfeld, H., Heimann, D., Wiebe, F. and Kirchner, F. (2024) Quantum deep reinforcement learning for robot navigation tasks. DOI:10.48550/arXiv.2202.12180.
  5. Jang, I., Kim, D., Lee, D. and Son, Y. (2018) An agent-based simulation modeling with deep reinforcement learning for smart traffic signal control. In: Proceedings of International Conference on Information and Communication Technology Convergence (ICTC), Jeju, October 2018. IEEE, 1028–1030. DOI: 10.1109/ICTC.2018.8539377.
  6. Joo, H., Ahmed, S.H. and Lim, Y. (2020) Traffic signal control for smart cities using reinforcement learning. Computer Communications, 154(1), 324–330. DOI:10.1016/j.comcom.2020.03.005.
  7. Kekuda, A., Anirudh, R. and Krishnan, M. (2021) Reinforcement learning based intelligent traffic signal control using n-step sarsa. In: Proceedings of International Conference on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore, March 2021. IEEE, 379–384. DOI: 10.1109/ICAIS50930.2021.9395942.
  8. Kodagoda, D., Perera, D., Seneviratne, G. and Kumarasinghe, P. (2021) Minimize traffic congestion with emergency facilitation using deep reinforcement learning. In: Proceedings of the 21st International Conference on Advances in ICT for Emerging Regions (ICter), Colombo, December 2021. IEEE, 55–62. DOI: 10.1109/ICter53630.2021.9774792.
  9. Kumar, N., Rahman, S.S. and Dhakad, N. (2020) Fuzzy inference enabled deep reinforcement learning-based traffic light control for intelligent transportation system. IEEE Transactions on Intelligent Transportation Systems, 22(8), 4919 - 49281. DOI:10.1109/TITS.2020.2984033.
  10. Kuang, L., Zheng, J., Li, K. and Gao, H. (2021) Intelligent traffic signal control based on reinforcement learning with state reduction for smart cities. ACM Transactions on Internet Technology (TOIT), 21(4), 1–24. DOI:10.1145/3418682.
  11. Lample, G. and Chaplot, D.S. (2017) Playing FPS games with deep reinforcement learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, February 2017. Palo Alto: AAAI Press, 31(1). DOI: https://doi.org/10.1609/aaai.v31i1.10827.
  12. Liu, X.-Y., Zhu, M., Borst, S. and Walid, A. (2023) Deep reinforcement learning for traffic light control in intelligent transportation systems. DOI:10.48550/arXiv.2302.03669.
  13. Sherif, H., Ahmed, E. and Kotb, A.M. (2024) Energy-efficient and accelerated resource allocation in O-RAN slicing using deep reinforcement learning and transfer learning. Cybernetics and Information Technologies, 24(3), 132–150. DOI:10.2478/cait-2024-0029.
  14. Tan, J., Yuan, Q., Guo, W., Xie, N., Liu, F., Wei, J. and Zhang, X. (2022) Deep reinforcement learning for traffic signal control model and adaptation study. Sensors, 22(22), 8732. DOI:10.3390/s22228732.
  15. Wei, H., Zheng, G., Yao, H. and Li, Z. (2018) Intellilight: A reinforcement learning approach for intelligent traffic light control. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, August 2018. New York: Association for Computing Machinery, 2496–2505. DOI:10.1145/3219819.3220096.
  16. Zhang, R., Ishikawa, A., Wang, W., Striner, B. and Tonguz, O.K. (2020) Using reinforcement learning with partial vehicle detection for intelligent traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 22(1), 404–415. DOI: 10.1109/TITS.2019.2958859.
  17. Zhu, Y., Cai, M., Schwarz, C.W., Li, J. and Xiao, S. (2022) Intelligent traffic light via policy-based deep reinforcement learning. International Journal of Intelligent Transportation Systems Research, 20(3), 734–744. DOI:10.1007/s13177-022-00321-5.
DOI: https://doi.org/10.2478/ttj-2025-0020 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 266 - 275
Published on: Jun 16, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Wissam Bouzi, Samia Bentaieb, Abdelaziz Ouamri, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.