References
- Borshchev, A. (2013) The big book of simulation modelling. Multimethod modelling with AnyLogic 6. AnyLogic North America.
- Buss, A., Al Rowaei, A. (2010) A comparison of the accuracy of discrete event and discrete time. In: Proceedings of the 2010 Winter Simulation Conference, Baltimore, December 2010. IEEE, 1468–1477.
- Damiron, C., Krahl, D. (2014) A global approach for discrete rate simulation. In: Proceedings of the 2014 Winter Simulation Conference, Savannah, December 2014. IEEE, 2966–2977.
- Elizandro, D., Taha, H. (2007) Simulation of industrial systems. Discrete event simulation using Excel VBA. Auerbach Publications.
- Hennies, T., Reggelin, T., Tolujew, J., Piccut, P.-A. (2014) Mesoscopic supply chain simulation. Journal of Computational Science, 5(3), 463–470. doi:10.1016/j.jocs.2013.08.004.
- Love, D. (2017) Dynamic simulation on a spreadsheet as a tool for evaluating options for mixed juice flow control. In: Proceedings of the 90th South African Congress of the South African Sugar Technologists’ Association (SASTA), 90, 366–381. Available: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20183262241.
- Morrison, A., Diesmann, M. (2007) Maintaining causality in discrete time neuronal network simulations. Lectures in Supercomputational Neurosciences. Understanding Complex Systems. Springer, Berlin, Heidelberg. Available: https://doi.org/10.1007/978-3-540-73159-7_10.
- Phelps, R. A., Parsons, D. J., Siprelle, A. J. (2002) Non-item based discrete-event simulation tools. In: Proceedings of the 2002 Winter Simulation Conference, San Diego, December 2002. IEEE, 182–186.
- Reggelin, T., Tolujew J. (2011) A mesoscopic approach to modelling and simulation of logistics processes. In: Proceedings of the 2011 Winter Simulation Conference, Phoenix, December 2011. IEEE, pp. 1513–1523.
- Reggelin, T., Lang, S., Schauf, Ch. (2020) Mesoscopic discrete-rate-based simulation models for production and logistics planning. Journal of Simulation, 16(5), 448–457. https://doi.org/10.1080/17477778.2020.1841575.
- Riezebos, S. (2016) Discrete-time simulation and optimization of multi-echelon distribution systems. Master thesis, Eindhoven University of Technology. Available: https://dc.wtb.tue.nl/lefeber/do_download_pdf.php?id=169.
- Savrasovs, M. (2012) Traffic flow simulation on discrete rate approach base. Transport and Telecommunication, 13(2), 167–173. doi:10.2478/v10244-012-0014-8.
- Seila, A. F. (2003) Spreadsheet simulation. In: Proceedings of the 2003 Winter Simulation Conference, Monterey, December 2006. IEEE, 25–30.
- Sun, B., Appiah, J., Park, B. B. (2020) Practical guidance for using mesoscopic simulation tools. Transportation Research Procedia, 48, 764–776. doi:10.1016/j.trpro.2020.08.078.
- Tang, J., Leu, G., Abbass, H. A. (2020) Simulation and computational red teaming for problem solving. Hoboken: IEEE Press. doi:10.1002/9781119527183.
- Toney, J., Jayakumar, A. (2022) MATLAB programming for engineering applications. The Ohio State University.
- Vensim. (2024) Vensim® Personal Learning Edition. Available: https://vensim.com/vensim-personal-learning-edition/.
- World Bank. (2023) Middle trade and transport corridor: Policies and investments to triple freight volumes and halve travel time by 2030. Washington, DC: World Bank. Available: https://www.worldbank.org/en/region/eca/publication/middle-trade-and-transport-corridor.
- Zeigler, B. P., Kofman, E. (2018) Theory of modelling and simulation. Third Edition, Academic Press.