References
- Ackert, S. (2011) Engine maintenance concepts for financiers elements of turbofan shop maintenance costs. Available at: http://www.aircraftmonitor.com/uploads/1/5/9/9/15993320/engine_mx_concepts_for_financiers___v2.pdf (Accessed: September 1, 2011).
- Afanasyev, V.N., Chudnovsky, Ya.P., Leontiev, A.I., Roganov P.S. (1993) Turbulent flow friction and heat transfer characteristics for spherical cavities on a flat plate. Experimental Thermal and Fluid Science, 7(1), 1–8. Available at: https://doi.org/10.1016/0894-1777(93)90075-T.
- Al-Obaidi, A. R., Chaer, I. (2021) Study of the flow characteristics, pressure drop and augmentation of heat performance in a horizontal pipe with and without twisted tape inserts. Case Studies in Thermal Engineering, 25. https://doi.org/10.1016/j.csite.2021.100964.
- ANSYS Manual. (2006) Fluent 6.2 Documentation File.
- Brown, G.O. (2002) The History of the Darcy-Weisbach Equation for Pipe Flow Resistance. In: Environmental and Water Resources History Proceedings. Reston, VA: American Society of Civil Engineers, 34–43. Available at: https://doi.org/10.1061/40650(2003)4.
- Chyu, M. (1997) Concavity enhanced heat transfer in an internal cooling passage. In: Proceedings of the ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. https://www.academia.edu/77268876/Concavity_Enhanced_Heat_Transfer_in_an_Internal_Cooling_Passage (Accessed: 1 June 1997).
- Coletti, F., Scialanga, M., Arts, T. (2012) Experimental investigation of conjugate heat transfer in a rib-roughened trailing edge channel with crossing jets, Journal of Turbomachinery, 134(4). https://doi.org/10.1115/1.4003727.
- Elmenshawy, A.A.A.E., Alomar, I. (2022) Statistics and Investigation of CF6 Jet Engines Hot Section Failures. In: Reliability and Statistics in Transportation and Communication. RelStat 2021. Lecture Notes in Networks and Systems, 410, 88–98. Springer, Cham 2022. https://doi.org/10.1007/978-3-030-96196-1_9.
- Glynn, C., O’Donovan, T. and Murray, D. (2005) Jet impingement cooling. In: Proceedings of the 9th UK National Heat Transfer Conference, 5–6. Manchester, UK.
- Hylton, L. D., York, R.E. (1983) Analytical and experimental evaluation of the heat transfer distribution over the surfaces of turbine vanes. NASA Contractor Report. Available at: https://ntrs.nasa.gov/citations/19830020105.
- Moon, H.K., O’Connell, T., Glezer, B. (2000) Channel height effect on heat transfer and friction in a dimpled passage. Journal of Engineering for Gas Turbines and Power, 122(2), 307–313. https://doi.org/10.1115/1.483208.
- Nikora, V. (2006) Hydrodynamics of aquatic ecosystems. Acta Geophysica, 55(1), 3–10. DOI:10.2478/s11600-006-0043-6.
- Nirmalan, V., Hylton, L.D. (1989) An experimental study of turbine vane heat transfer with leading edge and downstream film cooling. Heat Transfer; Electric Power; Industrial and Cogeneration. American Society of Mechanical Engineers, 4. https://doi.org/10.1115/89-GT-69.
- Nozhnitsky, Y.A. (2018) The problem of ensuring reliability of gas turbine engines. In: IOP Conference Series: Materials Science and Engineering, 302, 012082. https://doi.org/10.1088/1757-899X/302/1/012082.
- Organ, A.J. (2007) Counter-flow spiral heat exchanger – Spirex, in the air engine. Elsevier, 29–38. https://doi.org/10.1533/9781845693602.1.29.
- Rossman, C.D. (2016) Analysis of a coupled micro-and triple-impingement cooling analysis of a coupled micro-and triple-impingement cooling configuration in the C3X vane configuration in the C3X vane. https://commons.erau.edu/edt.
- Shen, Zh., Qu, H.,Zhang, D., Xie, Y. (2013) Effect of bleed hole on flow and heat transfer performance of U-shaped channel with dimple structure. International Journal of Heat and Mass Transfer, 66, 10–22. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.008.
- Uysal, U., Li, P.-W., Chyu, M.K., Cunha, F.J. (2006) Heat transfer on internal surfaces of a duct subjected to impingement of a jet array with varying jet hole-size and spacing. Journal of Turbomachinery, 128(1), 158–165. https://doi.org/10.1115/1.2101859.
- Wang, J., Sunden, B., Zeng, M., Wang, Q. (2015) Film cooling effects on the tip flow characteristics of a gas turbine blade. Propulsion and Power Research, 4(1), 9–22. https://doi.org/10.1016/j.jppr.2015.02.003.
- Wang, K., Li, H. Zhu, J. (2014) Experimental study of heat transfer characteristic on jet impingement cooling with film extraction flow. Applied Thermal Engineering, 70(1), 620–629. https://doi.org/10.1016/j.applthermaleng.2014.05.077.
- Wang, L., Wang, S., Wen, F., Zhou, X., Wang, Zh. (2018) Heat transfer and flow characteristics of U-shaped cooling channels with novel wavy ribs under stationary and rotating conditions. International Journal of Heat and Mass Transfer, 126, 312–333. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.123.
- Xu, T., Shi, D., Zhang, D., Xie, Y. (2023) Flow and heat transfer characteristics of the turbine blade variable cross-section internal cooling channel with turning vane. Applied Sciences, 13(3), 1446. https://doi.org/10.3390/app13031446.
- Yamane, Y., Ichikawa, Y., Yamamoto, M. Honami, Sh. (2012) Effect of injection parameters on jet array impingement heat transfer. International Journal of Gas Turbine, Propulsion and Power Systems, 4(1), 27–34. https://doi.org/10.38036/jgpp.4.1_27.
- Yang, Sh.-F., Wu, H.-W., Han, J.-Ch., Zhang, L., Moon, H.-K. (2017) Heat transfer in a smooth rotating multi-passage channel with hub turning vane and trailing-edge slot ejection. International Journal of Heat and Mass Transfer, 109, 1–15. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.059.
- Zaretsky, E. V., Litt, J.S., Hendricks, R.C. (2012) Determination of turbine blade life from engine field data. https://ntrs.nasa.gov/search.jsp?R=20120007098.