Have a personal or library account? Click to login
Computational Fluid Dynamics Analysis of Flow Characteristics and Heat Transfer Variabilities in Multiple Turbine Blade Cooling Channels Cover

Computational Fluid Dynamics Analysis of Flow Characteristics and Heat Transfer Variabilities in Multiple Turbine Blade Cooling Channels

Open Access
|Feb 2024

References

  1. Ackert, S. (2011) Engine maintenance concepts for financiers elements of turbofan shop maintenance costs. Available at: http://www.aircraftmonitor.com/uploads/1/5/9/9/15993320/engine_mx_concepts_for_financiers___v2.pdf (Accessed: September 1, 2011).
  2. Afanasyev, V.N., Chudnovsky, Ya.P., Leontiev, A.I., Roganov P.S. (1993) Turbulent flow friction and heat transfer characteristics for spherical cavities on a flat plate. Experimental Thermal and Fluid Science, 7(1), 1–8. Available at: https://doi.org/10.1016/0894-1777(93)90075-T.
  3. Al-Obaidi, A. R., Chaer, I. (2021) Study of the flow characteristics, pressure drop and augmentation of heat performance in a horizontal pipe with and without twisted tape inserts. Case Studies in Thermal Engineering, 25. https://doi.org/10.1016/j.csite.2021.100964.
  4. ANSYS Manual. (2006) Fluent 6.2 Documentation File.
  5. Brown, G.O. (2002) The History of the Darcy-Weisbach Equation for Pipe Flow Resistance. In: Environmental and Water Resources History Proceedings. Reston, VA: American Society of Civil Engineers, 34–43. Available at: https://doi.org/10.1061/40650(2003)4.
  6. Chyu, M. (1997) Concavity enhanced heat transfer in an internal cooling passage. In: Proceedings of the ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. https://www.academia.edu/77268876/Concavity_Enhanced_Heat_Transfer_in_an_Internal_Cooling_Passage (Accessed: 1 June 1997).
  7. Coletti, F., Scialanga, M., Arts, T. (2012) Experimental investigation of conjugate heat transfer in a rib-roughened trailing edge channel with crossing jets, Journal of Turbomachinery, 134(4). https://doi.org/10.1115/1.4003727.
  8. Elmenshawy, A.A.A.E., Alomar, I. (2022) Statistics and Investigation of CF6 Jet Engines Hot Section Failures. In: Reliability and Statistics in Transportation and Communication. RelStat 2021. Lecture Notes in Networks and Systems, 410, 88–98. Springer, Cham 2022. https://doi.org/10.1007/978-3-030-96196-1_9.
  9. Glynn, C., O’Donovan, T. and Murray, D. (2005) Jet impingement cooling. In: Proceedings of the 9th UK National Heat Transfer Conference, 5–6. Manchester, UK.
  10. Hylton, L. D., York, R.E. (1983) Analytical and experimental evaluation of the heat transfer distribution over the surfaces of turbine vanes. NASA Contractor Report. Available at: https://ntrs.nasa.gov/citations/19830020105.
  11. Moon, H.K., O’Connell, T., Glezer, B. (2000) Channel height effect on heat transfer and friction in a dimpled passage. Journal of Engineering for Gas Turbines and Power, 122(2), 307–313. https://doi.org/10.1115/1.483208.
  12. Nikora, V. (2006) Hydrodynamics of aquatic ecosystems. Acta Geophysica, 55(1), 3–10. DOI:10.2478/s11600-006-0043-6.
  13. Nirmalan, V., Hylton, L.D. (1989) An experimental study of turbine vane heat transfer with leading edge and downstream film cooling. Heat Transfer; Electric Power; Industrial and Cogeneration. American Society of Mechanical Engineers, 4. https://doi.org/10.1115/89-GT-69.
  14. Nozhnitsky, Y.A. (2018) The problem of ensuring reliability of gas turbine engines. In: IOP Conference Series: Materials Science and Engineering, 302, 012082. https://doi.org/10.1088/1757-899X/302/1/012082.
  15. Organ, A.J. (2007) Counter-flow spiral heat exchanger – Spirex, in the air engine. Elsevier, 29–38. https://doi.org/10.1533/9781845693602.1.29.
  16. Rossman, C.D. (2016) Analysis of a coupled micro-and triple-impingement cooling analysis of a coupled micro-and triple-impingement cooling configuration in the C3X vane configuration in the C3X vane. https://commons.erau.edu/edt.
  17. Shen, Zh., Qu, H.,Zhang, D., Xie, Y. (2013) Effect of bleed hole on flow and heat transfer performance of U-shaped channel with dimple structure. International Journal of Heat and Mass Transfer, 66, 10–22. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.008.
  18. Uysal, U., Li, P.-W., Chyu, M.K., Cunha, F.J. (2006) Heat transfer on internal surfaces of a duct subjected to impingement of a jet array with varying jet hole-size and spacing. Journal of Turbomachinery, 128(1), 158–165. https://doi.org/10.1115/1.2101859.
  19. Wang, J., Sunden, B., Zeng, M., Wang, Q. (2015) Film cooling effects on the tip flow characteristics of a gas turbine blade. Propulsion and Power Research, 4(1), 9–22. https://doi.org/10.1016/j.jppr.2015.02.003.
  20. Wang, K., Li, H. Zhu, J. (2014) Experimental study of heat transfer characteristic on jet impingement cooling with film extraction flow. Applied Thermal Engineering, 70(1), 620–629. https://doi.org/10.1016/j.applthermaleng.2014.05.077.
  21. Wang, L., Wang, S., Wen, F., Zhou, X., Wang, Zh. (2018) Heat transfer and flow characteristics of U-shaped cooling channels with novel wavy ribs under stationary and rotating conditions. International Journal of Heat and Mass Transfer, 126, 312–333. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.123.
  22. Xu, T., Shi, D., Zhang, D., Xie, Y. (2023) Flow and heat transfer characteristics of the turbine blade variable cross-section internal cooling channel with turning vane. Applied Sciences, 13(3), 1446. https://doi.org/10.3390/app13031446.
  23. Yamane, Y., Ichikawa, Y., Yamamoto, M. Honami, Sh. (2012) Effect of injection parameters on jet array impingement heat transfer. International Journal of Gas Turbine, Propulsion and Power Systems, 4(1), 27–34. https://doi.org/10.38036/jgpp.4.1_27.
  24. Yang, Sh.-F., Wu, H.-W., Han, J.-Ch., Zhang, L., Moon, H.-K. (2017) Heat transfer in a smooth rotating multi-passage channel with hub turning vane and trailing-edge slot ejection. International Journal of Heat and Mass Transfer, 109, 1–15. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.059.
  25. Zaretsky, E. V., Litt, J.S., Hendricks, R.C. (2012) Determination of turbine blade life from engine field data. https://ntrs.nasa.gov/search.jsp?R=20120007098.
DOI: https://doi.org/10.2478/ttj-2024-0008 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 77 - 96
Published on: Feb 16, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Adham Ahmed Awad Elsayed Elmenshawy, Iyad Alomar, Ali Arshad, Aleksandrs Medvedevs, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.