Have a personal or library account? Click to login
Aviation Profiling Method Based on Deep Learning Technology for Emotion Recognition by Speech Signal Cover

Aviation Profiling Method Based on Deep Learning Technology for Emotion Recognition by Speech Signal

Open Access
|Nov 2021

References

  1. 1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J. et al. (2016) TensorFlow: A system for large-scale machine learning. In: Proceedings of 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), USENIX Association, 2016, 265-283.
  2. 2. Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W., Weiss, B. (2005) A database of German emotional speech. In: Proceedings of the Interspeech 2005, Lissabon, Portugal, 2005, 1517–1520.10.21437/Interspeech.2005-446
  3. 3. Cornelius, R. R. (1996) The science of emotion: Research and tradition in the psychology of emotions. Prentice-Hall, Upper Saddle River, NJ.
  4. 4. Ekman, P. (1971). Universals and cultural differences in facial expressions of emotion. Nebraska Symposium on Motivation, 19, 207–283.
  5. 5. El Ayadi, M.M.H., Kamel, M.S., Karray, F. (2007) Speech emotion recognition using Gaussian mixture vector autoregressive models. In: Proceedings of ICASSP 2007, 4, 957–960.
  6. 6. Garofolo, John S. et al. (1993) TIMIT Acoustic-Phonetic Continuous Speech Corpus LDC93S1. Web Download. In: Proceedings of the Philadelphia: Linguistic Data Consortium, 1993. DOI: 10.35111/17gk-bn40.
  7. 7. Go, H., Kwak, K., Lee, D., Chun, M. (2003) Emotion recognition from the facial image and speech signal. In: Proceedings of the IEEE SICE 2003, 3, 2890–2895.
  8. 8. Goodfellow, I., Bengio, Y., Courville, A. (2016) Deep Learning. Cambridge, MA: MIT Press.
  9. 9. Haq, S., Jackson, P.J.B. (2009) Speaker-Dependent Audio-Visual Emotion Recognition, In: Proceedings of International Conference on Auditory-Visual Speech Processing, 53-58.
  10. 10. Jont, B. Allen (1977) Short Time Spectral Analysis, Synthesis, and Modification by Discrete Fourier Transform. In: Proceedings of IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-25(3), 235–238.
  11. 11. Kingma, D., Ba, J. (2014) Adam: A Method for Stochastic Optimization. In: Proceedings of 3rd International Conference for Learning Representations, San Diego, 2015, 1-15.
  12. 12. Kun, Z., Berrak, S., Rui, L., Haizhou, L. (2021) Seen and unseen emotional style transfer for voice conversion with a new emotional speech dataset. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 6-11 June 2021.Toronto, Ontario, Canada. DOI: 10.1109/ICASSP39728.2021.9413391.10.1109/ICASSP39728.2021.9413391
  13. 13. Lawrence, R., Ronald, S. (2007) Introduction to Digital Speech Processing, Foundations and Trends in Signal Processing, 1(1–2), 1-194. DOI: 10.1561/2000000001.10.1561/2000000001
  14. 14. Lee, C., Narayanan, S. (2005) Toward detecting emotions in spoken dialogs. In: Proceedings of IEEE Trans. Speech Audio Process, 13(2), 293–303.
  15. 15. Livingstone, S., Russo, F. (2018) The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English. PLoS ONE, 13(5). DOI: 10.1371/journal.pone.0196391.10.1371/journal.pone.0196391595550029768426
  16. 16. Martin, O., Kotsia, I., Macq, B., Pitas, I. (2006) The INTERFACE’05 Audio-Visual Emotion Database. In: Proceedings of Data Engineering Workshops, Proceedings. 22nd International Conference. DOI: 10.1109/ICDEW.2006.145.10.1109/ICDEW.2006.145
  17. 17. Pichora-Fuller, M. K., Dupuis, K. (2020) Toronto emotional speech set (TESS). Scholars Portal Dataverse, V1. DOI: 10.5683/SP2/E8H2MF.
  18. 18. Razuri, J. G., Sundgren, D., Rahmani, R., Larsson, A., Moran, A. C., Bonet, I. (2015) Speech emotion recognition in emotional feedback for Human-Robot. Interaction. International Journal of Advanced Research in Artificial Intelligence, 4(2). DOI: 10.14569/IJARAI.2015.040204.10.14569/IJARAI.2015.040204
  19. 19. Schuller, B. (2002) Towards intuitive speech interaction by the integration of emotional aspects. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, 6. DOI: 10.1109/ICSMC.2002.1175635.10.1109/ICSMC.2002.1175635
  20. 20. Schuller, B., Rigoll, G., Lang, M. (2003) Hidden Markov model-based speech emotion recognition. In: Proceedings of the International Conference on Multimedia and Expo (ICME), 1, 401–404.
  21. 21. Schuller, B., Rigoll, G., Lang, M. (2004) Speech emotion recognition combining acoustic features and linguistic information in a hybrid support vector machine-belief network architecture. In: Proceedings of the ICASSP 2004, 1, 577–580.10.1109/ICASSP.2004.1326051
  22. 22. Uday, K., John, L., Whitaker, J. (2019) Deep Learning for NLP and Speech Recognition. Springer Nature Switzerland AG.
  23. 23. Zwicker, E., Fastl, H. (1990) Psycho-acoustics. Springer-Verlag, 2nd Edition.
DOI: https://doi.org/10.2478/ttj-2021-0037 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 471 - 481
Published on: Nov 20, 2021
Published by: Transport and Telecommunication Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 К.Т. Koshekov, А.А. Savostin, B.K. Seidakhmetov, R.K. Anayatova, I.O. Fedorov, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.