Have a personal or library account? Click to login
Aviation Profiling Method Based on Deep Learning Technology for Emotion Recognition by Speech Signal Cover

Aviation Profiling Method Based on Deep Learning Technology for Emotion Recognition by Speech Signal

Open Access
|Nov 2021

Abstract

This paper proposes a method of automatic speaker-independent recognition of human psycho-emotional states by analyzing the speech signal based on Deep Learning technology to solve the problems of aviation profiling. For this purpose, an algorithm to classify seven human psycho-emotional states, including anger, joy, fear, surprise, disgust, sadness, and neutral state was developed. The algorithm is based on the use of Mel-frequency cepstral coefficients and Mel spectrograms as informative features of speech signals audio recordings. These informative features are used to train two deep convolutional neural networks on the generated dataset. The developed classifier testing on a delayed verification dataset showed that the metric for the multiclass fraction of correct answers’ accuracy is 0.93. The solution proposed in the paper can be in demand in human-machine interfaces creation, medicine, marketing, and in the field of air transportation.

DOI: https://doi.org/10.2478/ttj-2021-0037 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 471 - 481
Published on: Nov 20, 2021
Published by: Transport and Telecommunication Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 К.Т. Koshekov, А.А. Savostin, B.K. Seidakhmetov, R.K. Anayatova, I.O. Fedorov, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.