Have a personal or library account? Click to login
Simulation Based Performance of Mumbai-Pune Expressway Scenario for Vehicle-to-Vehicle Communication Using IEEE 802.11P Cover

Simulation Based Performance of Mumbai-Pune Expressway Scenario for Vehicle-to-Vehicle Communication Using IEEE 802.11P

Open Access
|Nov 2013

References

  1. 1. Blum, J.J., Eskandarian, A. & L.J. Huffman. (2004). Challenges of inter vehicle ad-hoc networks. IEEE Transactions on Intelligent Transportation System, 5(4), 347-351.10.1109/TITS.2004.838218
  2. 2. http://www.its.dot.gov/vii/index.htm.
  3. 3. Bilstrup, K., Uhlemann, E., Storm, E.G. & U. Bilstrup. (2008). Evaluation of the IEEE 802.11p MAC method for vehicle-to-vehicle communication. In Proceedings of the 68th IEEE Vehicular Technology Conference (VTC’08), September 2008 (pp.1-5). Calgary, Canada.
  4. 4. Bilstrup, K., Uhlemann, E., Storm, E.G. (2008). Medium access control in vehicular networks based on the upcoming IEEE 802.11p standard. In Proceedings of the 15th World Congress on Intelligent Transport Systems (ITS’08) , November 2008 (pp.1-12). New York, USA.
  5. 5. http://standards.ieee.org/board/nes/projects/802-11p.pdf
  6. 6. Bilstrup, K. (2007). A survey regarding wireless communication standards intended for a highspeedvehicle environment. Halmstad University, Sweden, Feb. 2007. (Technical Report IDE 0712).
  7. 7. Stibor, L., Zang, Y. & H-J. Reumermann. (2007). Evaluation of communication distance of broadcast messages in a vehicular ad- hoc network using IEEE 802.11p. In Proc. IEEE Wireless Communications and Networking Conf., Mar. 2007, (pp. 254-257). Hong Kong, China.
  8. 8. Wellen, M., Westphal, B. & P. Mähönen. (2007). Performance evaluation of IEEE 802.11-based WLANs in vehicular scenarios. In Proc. IEEE Vehicular Technology Conf., Apr. 2007 (pp. 1167-1171). Dublin, Ireland.
  9. 9. Xiang, W., Richardson, P. & J. Guo. (2007). Introduction and preliminary experimental results of wireless access for vehicular environments (WAVE) systems. In Proc. Int. Conf. Mobile and Ubiquitous Systems: Network and Services, Jul. 2007 (pp. 1-8). San José, CA, US.
  10. 10. IEEE P802.11p/D3.0, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Amendment: Wireless Access in Vehicular Environments (WAVE), Draft 3.0, Jul. 2007.
  11. 11. Jiang, D. & L. Delgrossi. (2007). IEEE 802.11: Towards an International Standard for Wireless Access in Vehicular Environments.
  12. 12. Alonso, A., Sjöberg, K., Uhlemann, E.,. Ström, E.G. & C.F. Mecklenbräuker. (2011). Challenging Vehicular Scenarios for Self-Organizing Time Division Multiple Access. European Cooperation in the Field of Scientific and Technical Research.
  13. 13. Sjöberg Bilstrup, K., Uhlemann, E. & E.G. Ström. (2010). Scalability issues for the MAC methods STDMA and CSMA/CA of IEEE 802.11p when used in VANETs. In Proceedings of the IEEE International Conference on Communications (ICC2010).
  14. 14. Bilstrup, K., Uhlemann, E., Ström, E.G. & U. Bilstrup. (2009). On the Ability of the 802.11p and STDMA to provide predictable channel access. In Proceedings of the 16th World Congress on ITS.
  15. 15. IEEE Std. 802.11e-2005, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements, 2005.
  16. 16. Bai, F. & H. Krishnan. (2006). Reliability analysis of DSRC wireless communication for vehicle safety applications. In Proc. IEEE Intelligent Transportation Systems Conf., Sep. 2006 (pp. 355-362). Toronto, Canada.
  17. 17. Blum, J., Eskandarian, A. & L.J. Hoffman. (Dec. 2004). Challenges of inter vehicle ad hoc networks. IEEE Trans. Intelligent Transportation Systems, 5(4), 347-351.
  18. 18. Krishna, C.M. & K.G. Shin. (1997). Real-Time Systems. New York: McGraw-Hill.
  19. 19. Eichler, S. (2007). Performance evaluation of the IEEE 802.11p WAVE communication standard. In Proc. IEEE Vehicular Technology Conf., Oct. 2007 (pp. 2199-2203). Baltimore, MD, US.
  20. 20. Choi, N. et al. (2007). A solicitation-based IEEE 802.11p MAC protocol for roadside to vehicular networks. In Proc. Work. on Mobile Networking for Vehicular Environments, May 2007 (pp. 91-96). Anchorage, AK, US,10.1109/MOVE.2007.4300811
  21. 21. Suthaputchakun, C. & A. Ganz. (2007). Priority based inter-vehicle communication in vehicular adhoc networks using IEEE 802.11e. In Proc. IEEE Vehicular Technology Conf., Apr. 2007 (pp. 2595-2599). Dublin, Ireland.
  22. 22. Shankar, S. & A. Yedla. (2007). MAC layer extensions for improved QoS in 802.11 based vehicular ad hoc networks. In Proc. IEEE Int. Conf. on Vehicular Electronics and Safety, Dec. 2007 (pp. 1-6). Beijing, China.
  23. 23. Sjöberg, K. (2011). Standardization of Wireless Vehicular Communications within IEEE and ETSI. IEEE VTS Workshop on Wireless Vehicular Communications.
  24. 24. Bilstrup, K., Uhlemann, E., Ström, E.G. & U. Bilstrup. (2009). On the Ability of the 802.11p MAC Method and STDMA to Support Real-Time Vehicle-to-Vehicle Communication. EURASIP Journalon Wireless Communications and Networking, 13, 2009.
  25. 25. Alonso, A., Sjöberg, K., Uhlemann, E., Ström, E.G. & C.F. Mecklenbräuker. (2011). Challenging Vehicular Scenarios for Self-Organizing Time Division Multiple Access. European Cooperation in the Field of Scientific and Technical Research.
DOI: https://doi.org/10.2478/ttj-2013-0026 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 300 - 315
Published on: Nov 15, 2013
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Keywords:

© 2013 Vaishali D. Khairnar, Ketan Kotecha, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons License.