References
- Kuk S. Hydrogen-powered ultralight training aircraft – a systems engineering approach. Transactions on Aerospace Research, 2025;279(2):1–17.
https://doi.org/10.2478/tar-2025-0006 . - Brewer GD, Morris RE, Lange RH, Moore JW. Volume I: Summary report: Study of the application of hydrogen fuel to long-range subsonic transport aircraft. NASA CR-132558. 1975.
- Airbus Deutschland GmbH. Liquid hydrogen fuelled aircraft – system analysis. Final technical report (publishable version). 2004.
- Yusaf T, Mahamude ASF, Kadirgama K, Ramasamy D, Farhana K, Dhahad HA, Abu Talib AR. Sustainable hydrogen energy in aviation – a narrative review. Int J Hydrogen Energy. 2024;52(Part C):1026–1045.
https://doi.org/10.1016/j.ijhydene.2023.02.086 - Gunasekar P, Manigandan S, Praveen Kumar TR. Hydrogen as the futuristic fuel for the aviation and aerospace industry – review. Aircraft Eng Aerosp Technol. 2021;93(3):410–416.
https://doi.org/10.1108/AEAT-07-2020-0145 - Yusaf T, Fernandes L, Abu Talib AR, Altarazi YSM, Alrefae W, Kadirgama K, et al. Sustainable aviation – hydrogen is the future. Sustainability. 2022;14(1):548.
- Savvaris A, Xie Y, Malandrakis K, Lopez M, Tsourdos A. Development of a fuel cell hybrid-powered unmanned aerial vehicle. In: 24th Mediterranean Conference on Control and Automation (MED); 2016 Jun 21–24; Athens, Greece. p. 1242–1247.
https://doi.org/10.1109/MED.2016.7536038 - Desantes JM, Novella R, García-Cuevas LM, Lopez-Juarez M. Feasibility study for a fuel cell-powered unmanned aerial vehicle with a 75 kg payload. Transactions on Aerospace Research. 2022;2022(2):13–30.
https://doi.org/10.1109/MED.2016.7536038 - Czarnocki P, Dudek M, Drabarek K, Frączek W, Iwański G, Miazga T, et al. Electric motor-glider powered by a hydrogen fuel cell stack. MATEC Web Conf. 2019;304:03011.
https://doi.org/10.1051/matecconf/201930403011 - Ghosh D, Willich C, Kallo J. High efficient energy system for electric passenger aircraft propulsion. In: AIAA SciTech 2019 Forum; 2019 Jan; San Diego, CA. AIAA 2019-1672.
https://doi.org/10.2514/6.2019-1672 - Romeo G, Borello F, Correa G. ENFICA-FC: Design, realization and flight test of all-electric 2-seat aircraft powered by fuel cells. Proc ICAS. 2010. See also: Romeo G, Borello F. Design and realisation of a two-seater aircraft powered by fuel cell electric propulsion. Aeronaut J. 2010;114(1155):281–297.
https://doi.org/10.1017/S0001924000003730 - Bradley TH, Moffitt BA, Mavris DN, Parekh DE. Design space exploration of small-scale PEM fuel cell long-endurance aircraft. In: 6th AIAA Aviation Technology, Integration, and Operations Conference (ATIO); 2006 Sep 25–27; Wichita, KS. AIAA 2006-7701.
https://doi.org/10.2514/6.2006-7701 - Mobariz KN, Youssef AM, Abdel-Rahman M. Long endurance hybrid fuel cell-battery powered UAV. World J Model Simul. 2015;11(1):69–80.
- Krawczyk JM, Mazur AM, Sasin T, Stokłosa AW. Fuel cells as alternative power for unmanned aircraft systems – current situation and development trends. Transactions on Aerospace Research. 2014;237(4):49–62.
- Rondinelli S, Sabatini R, Gardi A. Challenges and benefits offered by liquid hydrogen fuels in commercial aviation. Int J Sustainable Aviation. 2017;3(3):200–216.
https://doi.org/10.1504/IJSA.2017.10007966 - Thirkell A, Chen R, Harrington I. A fuel cell system sizing tool based on current production aircraft. SAE Tech Pap. 2017;2017-01-2135.
https://doi.org/10.4271/2017-01-2135 - Kadyk T, Winnefeld C, Hanke-Rauschenbach R, Krewer U. Analysis and design of fuel cell systems for aviation. Energies. 2018;11(1):204.
https://doi.org/10.3390/en11010204 - Thomas CE. Fuel cell and battery electric vehicles compared. Int J Hydrogen Energy. 2009;34(15):6005–6020.
https://doi.org/10.1016/j.ijhydene.2009.05.025 - Jain A, Jain A. Battery technology and the future of battery swapping systems for electric vehicles: opportunities and challenges. Int J Adv Res. 2022;10(Oct):553–567.
https://dx.doi.org/10.21474/IJAR01/15523 - Kuśmierek A, Galiński C, Stalewski W. Review of hybrid gas-electric aircraft propulsion systems versus alternative systems. Prog Aerosp Sci. 2023;141:100925.
https://doi.org/10.1016/j.paerosci.2023.100925 - Adler EJ, Martins JRRA. Hydrogen-powered aircraft: Fundamental concepts, key technologies, and environmental impacts. Prog Aerosp Sci. 2023;141:100922.
https://doi.org/10.1016/j.paerosci.2023.100922 - Abu Salem K, Palaia G, Quarta AA. Review of hybrid-electric aircraft technologies and designs: critical analysis and novel solutions. Prog Aerosp Sci. 2023;141:100924.
https://doi.org/10.1016/j.paerosci.2023.100924 - Ansell PJ. Review of sustainable energy carriers for aviation: benefits, challenges, and future viability. Prog Aerosp Sci. 2023;141:100919.
https://doi.org/10.1016/j.paerosci.2023.100919 - Dudek M, Raźniak A, Dudek P, Korkosz M, Wygonik P, Bogusz P, Frączek W. Some aspects of gaseous hydrogen storage and the performance of a 10-kW polymer electrolyte membrane fuel cell stack as part of a hybrid power source. In: 2nd International Conference on the Sustainable Energy and Environmental Development (SEED); 2017 Nov 14–17; Kraków, Poland.
- Romeo G, Cestino E, Borello F. More/all electric aircraft based on fuel cell energy system: the ENFICA-FC experience. In: 28th International Congress of the Aeronautical Sciences (ICAS 2012); 2012 Sep 23–28; Brisbane, Australia.
- Winnefeld C, Kadyk T, Bensmann B, Krewer U, Hanke-Rauschenbach R. Modelling and designing cryogenic hydrogen tanks for future aircraft applications. Energies. 2018;11(1):105.
https://doi.org/10.3390/en11010105 - Rondinelli S, Sabatini R, Gardi A. Challenges and benefits offered by liquid hydrogen fuels in commercial aviation. In: Practical Responses to Climate Change (PRCC 2014); 2014 Nov 27–28; Melbourne, Australia.
https://doi.org/10.3316/informit.042058746545488 - Sadraey MH. Aircraft design: a systems engineering approach. Chichester: Wiley; 2013.
- Galiński C. Wybrane zagadnienia projektowania samolotów. Warszawa: Wydawnictwa Naukowe Instytutu Lotnictwa; 2016.
- Galiński C. Wybrane zagadnienia konstrukcji samolotów. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej; 2020.
- European Aviation Safety Agency. Certification Specifications for Very Light Aeroplanes (CS-VLA). Cologne: EASA; 2009.
- Raymer DP. Aircraft design: a conceptual approach. 6th ed. Reston (VA): American Institute of Aeronautics and Astronautics; 2018.
- Roskam J. Airplane design. Part V: Component weight estimation. 3rd ed. Lawrence (KS): DARcorporation; 2018.
- MGM Compro. REB 90 electric motor: technical datasheet. Accessed 2024.
https://www.mgm-compro.com/electric-motor/80-kw-electric-motor/ - EH Group. EH81 fuel cell stack: technical datasheet. Accessed 2024.
https://hyfindr.com/common/datasheet/product/174/inline/EHGroup-EH81-datasheet-1.pdf - Doosan Mobility Innovation. Ultralight type 4 hydrogen tank: datasheet. Accessed 2024.
https://www.doosanmobility.com/en/products/hydrogen-tank - Swann MD, Takahashi TT. A total flight envelope approach to conceptual design stability & control. In: 15th AIAA Aviation Technology, Integration, and Operations Conference (ATIO); 2015 Jun 22–26; Dallas, TX. AIAA 2015-3377.
https://doi.org/10.2514/6.2015-3377 - JSBSim. Mass properties database: documentation. Accessed 2025.
https://jsbsim.sourceforge.net/MassProps.html - ZeroAvia. Hydrogen-electric aviation program overview. Accessed 2025.
https://zeroavia.com/ - Airbus. ZEROe: towards the world's first zero-emission commercial aircraft. Accessed 2025.
https://www.airbus.com/en/innovation/energy-transition/hydrogen/zeroe-our-hydrogen-powered-aircraft - H2FLY. Company and project overview. Accessed 2025.
https://www.h2fly.de/ - CFM International. RISE program overview. Accessed 2025.
https://www.cfmaeroengines.com/rise/