Have a personal or library account? Click to login
Low-Fidelity Static Aeroelastic Analysis for Jig Shape Optimization of a Solar-Powered Hale Aircraft Wing Cover

Low-Fidelity Static Aeroelastic Analysis for Jig Shape Optimization of a Solar-Powered Hale Aircraft Wing

By: Pamela Bugała  
Open Access
|Jun 2025

References

  1. G, Cestino E. Design of a High-Altitude Long-Endurance Solar-Powered Unmanned Air Vehicle for Multi-Payload and Operations. Proc Inst Mech Eng G J Aerosp Eng 2007;221:199–216. https://doi.org/10.1243/09544100JAERO119.
  2. Mayank H, Katare LJ. Solar-Powered UAV Market Size, Share, Competitive Landscape and Trend Analysis Report, by Application, by Mode of Operation, by Type, by Range: Global Opportunity Analysis and Industry Forecast, 2025–2035. Allied Market Research; 2022. https://www.alliedmarketresearch.com/solar-powered-uav-market-A08543.
  3. Boucher RJ. Sunrise, the world’s first solar-powered airplane. J Aircraft 2012;22:840–6. https://doi.org/10.2514/3.45213.
  4. Noll TE, Brown JM, Perez-Davis ME, Ishmael SD, Tiffany GC. Investigation of the Helios Prototype Aircraft Mishap Volume I. 2004.
  5. Davey P. Zephyr HALE UAS (High Altitude Long Endurance Unmanned Aerial System). Science & Technology Conference, vol. 8, 2009.
  6. Weiss G. Around the World in a Solar Plane. IEEE Spectr 2004;41:12–4. https://doi.org/10.1109/MSPEC.2004.1270538.
  7. Cipolla V, Dine A, Viti A, Binante V. MDAO and Aeroelastic Analyses of Small Solar-Powered UAVs with Box-Wing and Tandem-Wing Architectures. Aerospace 2023;10:105. https://doi.org/10.3390/aerospace10020105.
  8. Okulski M, Ławryńczuk M. A Small UAV Optimized for Efficient Long-Range and VTOL Missions: An Experimental Tandem-Wing Quadplane Drone. Appl Sci 2022;12. https://doi.org/10.3390/app12147059.
  9. Rasmussen CC, Canfield RA, Blair M. Optimization process for configuration of flexible joined-wing. Collection of Technical Papers – 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, vol. 1, American Institute of Aeronautics and Astronautics Inc.; 2004, p. 358–66. https://doi.org/10.2514/6.2004-4330.
  10. Rasmussen CC, Canfield RA, Blair M. Joined-Wing Sensor-Craft Configuration Design. J Aircr 2006;43:1470–8. https://doi.org/10.2514/1.21951.
  11. Nick Galante/PMRF. The Helios Prototype flying wing is shown over the Pacific Ocean during its first test flight on solar power from the U.S. Navy’s Pacific Missile Range Facility in Hawaii. Http://WwwDfrcNasaGov/Gallery/Photo/IndexHtml 2001.
  12. Yanko T, Dmytrenko O. Prospects for the Implementation of New Materials and Technologies in the Aerospace Industry. Transactions on Aerospace Research 2021;2021:1–10. https://doi.org/10.2478/tar-2021-0019.
  13. Hasan YJ, Roeser MS, Hepperle M, Niemann S, Voß A, Handojo V, et al. Flight mechanical analysis of a solar-powered high-altitude platform. CEAS Aeronaut J 2022. https://doi.org/10.1007/s13272-022-00621-2.
  14. Kafkas A, Lampeas G. Static aeroelasticity using high fidelity aerodynamics in a staggered coupled and ROM scheme. Aerospace 2020;7:1–23. https://doi.org/10.3390/aerospace7110164.
  15. Grozdanov A. Transonic Static Aeroelasticity Using the 2.5D Nonlinear Vortex Lattice Method. https://publications.polymtl.ca/2899/. Mémoire de maîtrise, École Polytechnique de Montréal; 2017.
  16. Mao S, Xie C, Yang L, Yang C. Static Aeroelastic Characteristics of Morphing Trailing-Edge Wing Using Geometrically Exact Vortex Lattice Method. International Journal of Aerospace Engineering 2019;2019. https://doi.org/10.1155/2019/5847627.
  17. Yang L, Xie C, Yang C. Geometrically exact vortex lattice and panel methods in static aeroelasticity of very flexible wing. Proc Inst Mech Eng G J Aerosp Eng 2020;234:742–59. https://doi.org/10.1177/0954410019885238.
  18. Bordogna MT, Lancelot P, Bettebghor D, De Breuker R. Static and dynamic aeroelastic tailoring with composite blending and manoeuvre load alleviation. Structural and Multidisciplinary Optimization 2020;61:2193–216. https://doi.org/10.1007/S00158-019-02446-W/TABLES/5.
  19. Demirer HG. Static and dynamic aeroelastic analysis of a very light Aircraft. https://open.metu.edu.tr/handle/11511/93190. Middle East Technical University; 2021.
  20. Kidane BS, Troiani E. Static aeroelastic beam model development for folding winglet design. Aerospace 2020;7:1–16. https://doi.org/10.3390/AEROSPACE7080106.
  21. Kilimtzidis S, Kostopoulos V. Static Aeroelastic Optimization of High-Aspect-Ratio Composite Aircraft Wings via Surrogate Modeling. Aerospace 2023;10:251. https://doi.org/10.3390/aerospace10030251.
  22. Delavenne M, Barriety B, Vetrano F, Ferrand V, Salaun M. A Static Aeroelastic Analysis of an Active Winglet Concept for Aircraft Performances Improvement. Lecture Notes in Mechanical Engineering 2021:77–82. https://doi.org/10.1007/978-981-33-4960-5_12/COVER.
  23. Lyrio JAA, Azevedo JLF, Rade DA, da Silva RG. Computational static aeroelastic analyses in transonic flows. AIAA Aviation Forum 2020;1 Part F. https://doi.org/10.2514/6.2020-2718.
  24. Vindigni CR, Mantegna G, Esposito A, Orlando C, Alaimo A. An aeroelastic beam finite element for time domain preliminary aeroelastic analysis. Mechanics of Advanced Materials and Structures 2023;30:1064–72. https://doi.org/10.1080/15376494.2022.2124333.
  25. Yang L, Xie C, Liang D, An C. Geometrically Nonlinear Static Aeroelastic Analysis Based on CFD/CSD Interaction Accelerated by Panel Method, 2023, p. 324–36. https://doi.org/10.1007/978-981-19-7652-0_31.
  26. Galiński C. Preliminary Study of an Airplane for Electric Propulsion Testing at High Altitudes. Journal of KONES 2018;25:167–74. https://doi.org/10.5604/01.3001.0012.4328.
  27. Galiński C, Gronowska M, Stalewski W, Gumowski K. Flat-upper-surface wing for experimental high altitude unmanned aerial vehicle. Proc Inst Mech Eng G J Aerosp Eng 2021;235:81–94. https://doi.org/10.1177/0954410020925642.
  28. Bugała P, Sznajder J, Sieradzki A. Numerical Modelling of Static Aeroelastic Deformations of Slender Wing in Aerodynamic Design. Transactions on Aerospace Research 2023;2023:52–70. https://doi.org/10.2478/tar-2023-0023.
  29. Ritter M, Hilger J. Dynamic Aeroelastic Simulations of the Pazy Wing by UVLM with Nonlinear Viscous Corrections. AIAA SCITECH 2022 Forum, American Institute of Aeronautics and Astronautics; 2021. https://doi.org/10.2514/6.2022-0177.
  30. Li X, Wan Z, Wang X, Yang C. Aeroelastic Optimization Design of the Global Stiffness for a Joined Wing Aircraft. Applied Sciences 2021;11. https://doi.org/10.3390/app112411800.
  31. Banerjee JR. A FORTRAN routine for computation of coupled bending-torsional dynamic stiffness matrix of beam elements. Advances in Engineering Software and Workstations 1991;13:17–24. https://doi.org/10.1016/0961-3552(91)90041-2.
  32. Dillinger JKS, Abdalla MM, Meddaikar YM, Klimmek T. Static aeroelastic stiffness optimization of a forward swept composite wing with CFD-corrected aero loads. CEAS Aeronaut J 2019;10:1015–32. https://doi.org/10.1007/s13272-019-00397-y.
  33. Crovato A, Almeida HS, Vio G, Silva GH, Prado AP, Breviglieri C, et al. Effect of Levels of Fidelity on Steady Aerodynamic and Static Aeroelastic Computations. Aerospace 2020;7:42. https://doi.org/10.3390/aerospace7040042.
  34. Andersen L, Nielsen SRK. Elastic Beams in Three Dimensions – DCE Lecture Notes No. 23. vol. 1. Department of Civil Engineering, Aalborg University; 2008.
  35. Bauchau OA, Craig JI. Structural Analysis With Applications to Aerospace Structures. vol. 163. New York: Springer; 2009.
  36. Megson THG. Aircraft Structures for Engineering Students. Elsevier; 2021. https://doi.org/10.1016/B978-0-12-822868-5.09989-7.
  37. Roark RJ, Young WC, Budynas RG, Sadegh AM. Roark’s formulas for stress and strain. McGraw-Hill Education; 2012.
  38. FAI Sporting Code, Common Section 7-1 st FAI Sporting Code Section 7-Class O Common Hang Gliders and Paragliders Classes 1 to 5 2018 Edition Effective 1st. 2018.
  39. Findahl P. My F1A Developments, Free Flight Quarterly, pp. 27–31, January 2008. n.d.
  40. Galiński C, Gronowska M, Stalewski W, Gumowski K. Flat-upper-surface wing for experimental high altitude unmanned aerial vehicle. Proc Inst Mech Eng G J Aerosp Eng 2021;235:81–94. https://doi.org/10.1177/0954410020925642.
  41. Limpinsel M, Kuo D, Vijh A. SMARTS Modeling of Solar Spectra at Stratospheric Altitude and Influence on Performance of Selected III-V Solar Cells. 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), IEEE; 2018, p. 3367–73. https://doi.org/10.1109/PVSC.2018.8547665.
Language: English
Page range: 40 - 56
Submitted on: Mar 12, 2025
Accepted on: May 21, 2025
Published on: Jun 30, 2025
Published by: ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Pamela Bugała, published by ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.