Figure 1.
![Additive manufactured GE9X engine components: (A) T25 sensor housing; (B) fuel nozzle tip; and (C) low-pressure turbine blades (adopted from reference [1]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6573040e79f7550bc9e9ea22/j_tar-2023-0020_fig_001.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251205%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251205T173240Z&X-Amz-Expires=3600&X-Amz-Signature=4be5015f5e1a2047f16418d632570dcf9bd486cd06c8c772ea2e0e540998cb1e&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 2.
![Scheme of the fabrication stages: A – data preparation, B – manufacturing stage, C – the physical part (figures adopted from reference [2]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6573040e79f7550bc9e9ea22/j_tar-2023-0020_fig_002.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251205%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251205T173240Z&X-Amz-Expires=3600&X-Amz-Signature=ecff5fe7dda1daca911e3ee26d8f324a756ad790cf0cbf30e1e280c3157e9fc5&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 3.

Figure 4.

Figure 5.

Figure 6.
![The cross-sections of the tracks (A) simulation vs experimental sample. Track width at different laser travel speeds of (B) 1,050 mm/s, (C) 1,250 mm/s and (D) 1,450 mm/s (material: Ti-6Al; laser power: 175 W) (adopted from reference [8]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6573040e79f7550bc9e9ea22/j_tar-2023-0020_fig_006.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251205%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251205T173240Z&X-Amz-Expires=3600&X-Amz-Signature=3fe73cfa2f1e023fd62befff97b0278d8d9d467871e2a038b3acc1012f290704&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Thermophysical properties and other parameters used in simulation_
| Physical properties of the powder | ||
|---|---|---|
| Material density | ρ | 8,600 kg/m3 |
| Specific heat capacity solid phase | cs | 390 J/kgoK |
| Specific heat capacity liquid phase | cl | 410 J/kgoK |
| Latent heat of melting | Lm | 334 [kJ/kg] |
| Melting temperature | Tm | 1,380 °C |
| Boiling temperature | Tb | 2,930 °C |
| Upper temperature margin | ΔTB | 30 °C |
| Emissivity | ε | 0.7 |
| Process efficiency coefficient | η | 0.27 |
j_tar-2023-0020_tab_003
| A | Path cross-section area [m3] |
| C | Specific heat capacity [J/kg·K] |
| H | Powder bed thickness [μm] |
| ht | Track height [m] |
| L | Specific latent heat [J/kg] |
| ke | Thermal effective conductivity of powder [W/mK] |
| kp | Track section profile coefficient [-] |
| P | Laser beam power [W] |
| Pd | Hatch spacing [μm] |
| re | Effective laser beam radius [μm] |
| Tm | Melting temperature [K] |
| Tb | Boiling temperature [K] |
| TA | Lower temperature limit [K] |
| TB | Upper temperature limit [K] |
| V | Laser scanning speed [mm/s] |
| W | Track width [m] |
| β | Porosity |
| ρ | Density [kg/m3] |
Process parameters_
| Parameters | Lower limit | Upper limit | Unit |
|---|---|---|---|
| Laser beam power | 70 | 170 | W |
| Scanning speed | 100 | 1,200 | mm/s |
| Powder layer thickness | 25 | 35 | μm |