Have a personal or library account? Click to login
Market Forecasts and Client Behavioral Data: Towards Finding Adequate Model Complexity Cover

Market Forecasts and Client Behavioral Data: Towards Finding Adequate Model Complexity

Open Access
|Sep 2018

References

  1. 1. Bishop, C. M., “Neural Networks for Pattern Recognition”, Oxford University Press 199510.1201/9781420050646.ptb6
  2. 2. Bishop, C. M., “Pattern Recognition and Machine Learning”, Springer 2006
  3. 3. Baydin, A.G., Pearlmutter, B.A., Radul, A.A., and Siskind, J.M., “Automatic differrentiation in machine learning: a survey”, The Journal of Machine Learning Research, Vol.18, nr.153, pp1-43, 2018
  4. 4. Bevan, A., “Machine Learning with Tensorflow”, Slides of an applied lecture, https://pprc.qmul.ac.uk/~bevan/statistics/TensorFlow_tutorial.pdf (accessed at 20.5.2018)
  5. 5. Bourez, C., “Deep Learning with Theano”, Packt Publishing 2017
  6. 6. Chollet, F., “Introduction to Keras”, March 9th, 2018, Slides of an applied lecture, https://web.stanford.edu/class/cs20si/lectures/march9guestlecture.pdf
  7. 7. Hinton, G.E., Osindero, S., and The, Y., “A fast learning algorithm for deep belief nets”, Neural Computation, Vol. 18, pp1527-1554, 200610.1162/neco.2006.18.7.1527
  8. 8. G. Montavon, G., Orr, G.B., and Müller K.-R., “Neural Networks: Tricks of the Trade”, Springer, 2012.10.1007/978-3-642-35289-8
  9. 9. Gareth, J., Witten, D., Hastie, T., and Tibshirani, R., “An Introduction to Statistical Learning”, New York, Springer, 2015.
  10. 10. Harrison, D. and Rubinfeld, D.L. “Hedonic prices and the demand for clean air”, Journal of Environmental. Economics & Management, vol.5, 81-102, 1978.10.1016/0095-0696(78)90006-2
  11. 11. Hirasawa, K., Wang, X., Murata, J., Hu, J., and Jin, C., “Universal learning network and its application to chaos control”, Neural Networks 13, pp239-252, 200010.1016/S0893-6080(99)00100-8
  12. 12. Hosmer, D. W., and Lemeshow, S., “Applied Logistic Regression”. Wiley 2000.10.1002/0471722146
  13. 13. Ian Goodfellow, I., Bengio, Y., and Courville, A., “Deep Learning”, MIT Press 2016.
  14. 14. Ioffe, S., and Szegedy, C., "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", 2015.
  15. 15. Kaminski, B., Jakubczyk, M., and Szufel, P., "A framework for sensitivity analysis of decision trees". Central European Journal of Operations Research, 2017.10.1007/s10100-017-0479-6
  16. 16. Moro, S., Cortez, P. and Rita, P., “A Data-Driven Approach to Predict the Success of Bank Telemarketing”. Decision Support Systems, Vol. 62, pp22-31, 2014.10.1016/j.dss.2014.03.001
  17. 17. Liou, C.-Y., Cheng, W,-C., Liou, J.-W., and Liou, D.-R., "Autoencoder for words", Neurocomputing, 139, 2014.10.1016/j.neucom.2013.09.055
  18. 18. McLachlan, G. J., “Discriminant Analysis and Statistical Pattern Recognition”. Wiley Interscience, 2014
  19. 19. Srivastava, N., Hinton, G., Krizhevsky, A., and Sutskever, I., “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. Journal of Machine Learning Research 15 1929-1958. (2014).
  20. 20. Kotsiantis, S., Kanellopoulos, D., and Pintelas, P., "Data Preprocessing for Supervised Learning", International Journal of Computer Science, Vol. 1 N. 2, pp 111-117. (2006)
  21. 21. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., “Numerical Recipes”, 3rd edition, Cambridge University Press 2007
  22. 22. Schebesch, K.B., “Marktprognosen und Produktdesign mit datenorientierter KI”, Habilitation, University of Bremen 2003, 688pp
  23. 23. Trippa, L., Waldron, L., and Huttenhower, C.; Parmigiani, "Bayesian nonparametric cross-study validation of prediction methods". The Annals of Applied Statistics. 9 (1): 402-428. (2015).10.1214/14-AOAS798
  24. 24. Zimmermann H.G., and Weigend, A.S. “Representing Dynamical Systems in Feedforward Networks: A Six Layer Architecture”, in: Weigend, S.A., Abu-Mostafa, y., and Refenes, A.P.N. (eds.) Decision Technologies for Financial Engineering, Neural Networks in the Capital Markets 96, pp289-306, 1997
  25. 25. Repo1, http://lib.stat.cmu.edu/datasets/boston (accessed at 04.06.2018)
  26. 26. Repo2, https://archive.ics.uci.edu/ml/datasets/Bank+Marketing (accessed at 06.06.2018)
  27. 27. Rcran, https://cran.r-project.org (R version 3.5.0 accessed at 07.05.2018).
DOI: https://doi.org/10.2478/sues-2018-0015 | Journal eISSN: 2285-3065 | Journal ISSN: 1584-2339
Language: English
Page range: 50 - 75
Submitted on: Jul 1, 2018
Accepted on: Aug 1, 2018
Published on: Sep 15, 2018
Published by: Vasile Goldis Western University of Arad
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Dan Stelian Deac, Klaus Bruno Schebesch, published by Vasile Goldis Western University of Arad
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.