Blake, C.L., Merz, C.J. (1998) Churn Data Set, UCI Repository of Machine Learning Databases. http://www.sgi.com/tech/mlc/db, University of California, Department of Information and Computer Science, Irvine, CA.
Bose, I., Chen, X. (2009). Hybrid Models Using Unsupervised Clustering for Prediction of Customer Churn. Journal of Organizational Computing and Electronic Commerce. vol. 19, no. 2, April-June, 133–151.10.1080/10919390902821291
Ferraretti, D., Lamma, E., Gamberoni, G., Febo, M., Di Cuia, R. (2011). Integrating Clustering and Classification Techniques: A Case Study for Reservoir Facies Prediction. In D. Ryzko et al. Emerging Intelligent Technologies in Industry, SCI 369, Berlin Heidelberg: Springer-Verlag, 21–34.10.1007/978-3-642-22732-5_3
Frank, A., Asuncion, A. (2010). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.
Khan, D.M., Mohamudally, N. (2011). An Integration of K-means and Decision Tree (ID3) Towards a More Efficient Data Mining Algorithm. Journal of Computing. vol. 3, iss. 12, December, 76–82.
Krzanowski, W.J., Lai, Y.T. (1988). A Criterion for Determining the Number of Groups in a Data Set Using Sum-of-Squares Clustering. Biometrics. vol. 44, no. 1, 23–34.10.2307/2531893
Kumar, V., Rathee, N. (2011). Knowledge Discovery from Database Using an Integration of Clustering and Classification. International Journal of Advanced Computer Science and Applications. vol. 2, no. 3, March, 29–33.10.14569/IJACSA.2011.020306
Łapczyński, M., Jefmański, B. (2013). Impact of Cluster Validity Measures on Performance of Hybrid Models Based on K-means and Decision Trees. In P. Perner (Ed.), Advances in Data Mining. Ibai Publishing, 153–162.
Łapczyński, M., Surma, J. (2012). Hybrid Predictive Models for Optimizing Marketing Banner Ad Campaign in On-line Social Network. In R. Stahlbock, G.M. Weiss (Eds.) Proceedings of the 2012 International Conference on Data Mining, Las Vegas Nevada, USA: CSREA Press, 140–146.
Li, Y., Deng, Z., Qian, Q., Xu, R. (2011). Churn Forecast Based on Two-step Classification in Security Industry. Intelligent Information Management. no. 3, 160–165.
Moro, S., Laureano, R., Cortez, P. (2011). Using Data Mining for Bank Direct Marketing: An Application of the CRISP-DM Methodology. In P. Novais et al. (Eds.) Proceedings of the European Simulation and Modelling Conference – ESM'2011, Guimarães, Portugal, October, 117–121.
Shouman, M., Turner, T., Stocker, R. (2012). Integrating Decision Tree and K-Means Clustering with Different Initial Centroid Selection Methods in the Diagnosis of Heart Disease Patients. In R. Stahlbock, G.M. Weiss (Eds.) Proceedings of the 2012 International al Conference on Data Mining, Las Vegas Nevada, USA: CSREA Press, 24–30.
Tibshirani, R., Walther, G., Hastie, T. (2001). Estimating the Number of Clusters in a Data Set via the Gap Statistic. Journal of the Royal Statistical Society. ser. B, 63, part 2, 411–423.
van der Putten, P., van Someren, M. (Eds) (2000). CoIL Challenge 2000: The Insurance Company Case. In Also a Leiden Institute of Advanced Computer Science Technical Report 2000–09, Sentient Machine Research, Amsterdam, June 22.