Have a personal or library account? Click to login
A Note on Intended and Standard Models Cover

A Note on Intended and Standard Models

Open Access
|Nov 2020

References

  1. 1. Awodey, S., and E. H. Reck. Completeness and categoricity. Part I: Nineteenth-century axiomatics to twentieth-century metalogic, History and Philosophy of Logic 23, 2002, pp. 1-30.10.1080/01445340210146889
  2. 2. Bedürftig, T., and R. Murawski. Philosophy of mathematics, Berlin Boston: Walter de Gruyter GmbH, 2018.10.1515/9783110468335
  3. 3. Borsuk, K., and W. Szmielew. Podstawy geometrii, Warszawa: Państwowe Wydawnictwo Naukowe, 1975.
  4. 4. Carnap, R., and F. Bachmann. Über Extremalaxiome, Erkenntnis 6, 1936, pp. 166-188.10.1007/BF02538231
  5. 5. Carnap, R., and F. Bachmann. On extremal axioms [English translation of Carnap and Bachmann 1936, by H.G. Bohnert], History and Philosophy of Logic 2, 1981, pp. 67-85.10.1080/01445348108837022
  6. 6. Corcoran, J. Categoricity, History and Philosophy of Logic 1, 1980, pp. 187-207.10.1080/01445348008837010
  7. 7. Corcoran, J. From categoricity to completeness, History and Philosophy of Logic 2, 1981, pp. 113-119.10.1080/01445348108837024
  8. 8. Feferman, S. Conceptions of the continuum, Intellectica 51, 2009, pp. 169-189.10.3406/intel.2009.1737
  9. 9. Fraenkel, A. A. Einleitung in die Mengenlehre, Berlin: Verlag von Julius Springer, Berlin, 1928.10.1007/978-3-662-42029-4
  10. 10. Fraenkel, A. A., Y. Bar-Hillel, and A. Levy. Foundations of set theory, Amsterdam London: North-Holland Publishing Company, 1973.
  11. 11. Gaifman, H. Nonstandard models in a broader perspective, In A. Enayat and R. Kossak (eds.), Nonstandard models in arithmetic and set theory. AMS Special Session Nonstandard Models of Arithmetic and Set Theory, January 15–16, 2003, Baltimore, Maryland. Contemporary Mathematics 361, Providence, Rhode Island: American Mathematical Society, 2004, pp. 1-22.10.1090/conm/361/06585
  12. 12. Grzegorczyk, A. On the concept of categoricity, Studia Logica 13, 1962, pp. 39-66.10.1007/BF02317255
  13. 13. Hilbert, D. Grundlagen der Geometrie, Festschrift zur Feier der Enthüllung des Gauss-Weber-Denkmals in Göttingen, Leipzig: Teubner, 1899.
  14. 14. Hodges, W. Model theory, Cambridge: Cambridge University Press, 1993.
  15. 15. Lindenbaum, A., and A. Tarski. Über die Beschränkheit der Ausdruckmittel deduktiver Theorien, Ergebnisse eines mathematischen Kolloquiums 1934–1935, 7, 1936, pp. 15-22.
  16. 16. Mancosu, P. The adventure of reason. Interplay between philosophy and mathematical logic, 1900–1940, Oxford: Oxford University Press, 2010.
  17. 17. Marker, D. Model theory: an introduction, New York Berlin Heidelberg: Springer-Verlag, 2002.
  18. 18. Murawski, R. Funkcje rekurencyjne i elementy metamatematyki. Problemy zupełności, rozstrzygalności, twierdzenia Gödla, Poznań: Wydawnictwo Naukowe UAM, 2000.
  19. 19. Pogonowski, J. Extremal axioms. Logical, mathematical and cognitive aspects, Poznań: Wydawnictwo Nauk Społecznych i Humanistycznych UAM, 2019.
  20. 20. Putnam, H. Models and reality, The Journal of Symbolic Logic 45, 1980, pp. 464-482.10.2307/2273415
  21. 21. Schiemer, G. Carnap on extremal axioms, ‘completeness of models’, and categoricity, The Review of Symbolic Logic 5 (4), 2012, pp. 613-641.10.1017/S1755020312000172
  22. 22. Tarski, A. On the completeness and categoricity of deductive theories. Appendix in Mancosu, P. The adventure of reason. Interplay between philosophy and mathematical logic, 1900–1940, Oxford: Oxford University Press, 2010, 1940, pp. 485-492.
  23. 23. Woleński, J. Metamatematyka a epistemologia, Warszawa: Wydawnictwo Naukowe PWN, 1993.
  24. 24. Woleński, J. Kwadrat logiczny – uogólnienia, interpretacje, In J. Perzanowski and A. Pietruszczak (eds.), Logika & filozofia logiczna, Toruń: Wydawnictwo Uniwersytetu Mikołaja Kopernika, 2000, pp. 45-57.
  25. 25. Woleński, J. Epistemologia. Poznanie, prawda, wiedza, realizm, Warszawa: Wydawnictwo Naukowe PWN, 2005.
  26. 26. Zermelo, E. Über Grenzzahlen und Mengenbereiche: Neue Untersuchungen über die Grundlagen der Mengenlehre, Fundamenta Mathematicae 16, 1930, pp. 29-47.10.4064/fm-16-1-29-47
Language: English
Page range: 131 - 139
Published on: Nov 11, 2020
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 Jerzy Pogonowski, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.