References
- Andrade, A., Camotim, D. (2005). Lateral-torsional buckling of singly symmetric tapered beams: Theory and applications. Journal of Engineering Mechanics, 131(6), 586–597. doi: 10.1061/(ASCE)0733-9399(2005)131:6(586).
- Benyamina, A.B., Meftah, S.A., Mohri, F., Daya, E.M. (2013). Analytical solutions attempt for lateral torsional buckling of doubly symmetric web-tapered I-beams. Engineering Structures, 56, 1207–1219. doi: 10.1016/j.engstruct.2013.06.036.
- Andrade, A., Camotim, D., Dinis, P.B. (2007). Lateral-torsional buckling of singly symmetric web-tapered thin-walled I-beams: 1D model vs. shell FEA. Computers & Structures, 85(17–18), 1343–1359. doi: 10.1016/j.compstruc.2006.08.079.
- Asgarian, B., Soltani, M., Mohri, F. (2013). Lateral-torsional buckling of tapered thin-walled beams with arbitrary cross-sections, Thin-Walled Structures, 62, 96–108. doi: 10.1016/j.tws.2012.06.007.
- Branford, M.A. (1989). Inelastic buckling of tapered monosymmetric I-beams. Engineering Structures, 11(2), 119–126. doi: 10.1016/0141-0296(89)90021-7.
- Challamel, N., Andrade, A., Camotim, D. (2007). An analytical study on the lateral-torsional buckling of linearly tapered cantilever strip beams. International Journal of Structural Stability and Dynamics, 7(3), 441–456. doi: 10.1142/S0219455407002368.
- Osmani, A., Meftah, S.A. (2018). Lateral buckling of tapered thin walled bi-symmetric beams under combined axial and bending loads with shear deformations allowed. Engineering Structures, 165(15), 76–87. doi: 10.1016/j.engstruct.2018.03.009.
- Raftoyiannis, I.G., Adamakos, T. (2010). Critical lateral-torsional buckling moments of steel web-tapered I-beams. The Open Construction and Building Technology Journal, 4, 105–112. doi: 10.2174/18748368010040100105.
- Rezaiee-Pajand, M., Masoodi, A.R., Alepaighambar, A. (2018). Lateral-torsional buckling of functionally graded tapered I-beams considering lateral bracing. Steel and Composite Structures, 28(4), 403–414. doi: 10.12989/scs.2018.28.4.403.
- Soltani, M. (2022). A novel approach for lateral buckling assessment of double tapered thin-walled laminated composite I-beams. Mechanics of Advanced Composite Structures, 9, 11–23. doi: 10.22075/macs.2021.22105.1313.
- Soltani, M., Asgarian, B. (2021). Exact stiffness matrices for lateral–torsional buckling of doubly symmetric tapered beams with axially varying material properties. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 45, 589–609. doi: 10.1007/s40996-020-00402-z.
- Soltani, M., Asgarian, B. (2020). Lateral-torsional stability analysis of a simply supported axially functionally graded beam with a tapered I-section. Mechanics of Composite Materials, 56, 39–54. doi: 10.1007/s11029-020-09859-5.
- Soltani, M., Asgarian, B., Mohri, F. (2019). Improved finite element model for lateral stability analysis of axially functionally graded nonprismatic I-beams. International Journal of Structural Stability and Dynamics, 19(9), 1950108. doi: 10.1142/S0219455419501086.
- Soltani, M., Gharebaghi, S.A., Mohri, F. (2018). Lateral stability analysis of steel tapered thin-walled beams under various boundary conditions. Journal of Numerical Methods in Civil Engineering, 3(1), 13–25. doi: 10.29252/nmce.3.1.13.
- Zhang, L., Tong, G.S. (2008). Lateral buckling of web-tapered I-beams: A new theory. Journal of Constructional Steel Research, 64(12), 1379–1393. doi: 10.1016/j.jcsr.2008.01.014.
- El-Mahdy, G.M., El-Saadawy, M.M. (2015). Ultimate strength of singly symmetrical I-section steel beams with variable flange ratio. Thin-Walled Structures, 87, 149–157. doi: 10.1016/j.tws.2014.11.016.
- Ruta, P. (1999). Application of Chebyshev series to solution of non-prismatic beam vibration problems. Journal of Sound and Vibration, 227(2), 449–467. doi: 10.1006/jsvi.1999.2348.
- Ruta, P. (2002). Dynamic stability problem of non-prismatic rod. Journal of Sound and Vibration, 250(3), 445–464. doi: 10.1006/jsvi.2001.3954.
- Ruta, P. (2006). The application of Chebyshev polynomials to the solution of the nonprismatic Timoshenko beam vibration problem. Journal of Sound and Vibration, 296(1–2), 243–263. doi: 10.1016/j.jsv.2006.02.011.
- Ruta, P., Szybiński, J. (2014). Free vibration of non-prismatic sandwich beams using the Chebyshev series. Procedia Engineering, 91, 105–111. doi: 10.1016/j.proeng.2014.12.022.
- Ruta, P., Szybiński, J. (2015). Lateral stability of bending non-prismatic thin-walled beams using orthogonal series. Procedia Engineering, 111, 694–701. doi: 10.1016/j.proeng.2015.07.134.
- Ruta, P., Szybiński, J. (2015). Nonlinear analysis of nonprismatic Timoshenko beam for different geometric nonlinearity models. International Journal of Mechanical Sciences, 101–102, 349–362. doi: 10.1016/j.ijmecsci.2015.07.020.
- Szybiński, J., Ruta, P. (2021). An analysis of the effect of a change in the support point location on the vibration of thin-walled beams. International Journal of Structural Stability and Dynamics, 21(9), 2150125. doi: 10.1142/S021945542150125X.
- Szybiński, J., Ruta, P. (2019). Analysis of thin-walled beams with variable monosymmetric cross section by means of Legendre polynomials. Studia Geotechnica et Mechanica, 41(1), 1–12. doi: 10.2478/sgem-2019-0001.
- Szybiński, J., Ruta, P. (2022). Effect of a “slight” curvature of the axis of a thin-walled nonprismatic beam on its free vibration. International Journal of Structural Stability and Dynamics, 22(7), 2250043. doi: 10.1142/S0219455422500432.
- SOFiSTiK v2024. (2024). User’s Manuals. SOFISTIK AG. Oberschleissheim, Germany.
- Wilde, P. (1968). The torsion of thin-walled bars with variable cross-section. Archives of Mechanics, 4(20), 431–443.
- Lewanowicz, S. (1976). Construction of a recurrence relation of the lowest order for coefficients of the Gegenbauer series. Applicationes Mathematicae, 15(3), 345–396.
- Paszkowski, S. (1975). The numerical application of Chebyshev polynomials and series (in Polish). Warsaw: Polish Scientific Publishers.
- Wolfram Research, Inc., Mathematica, Version 14.0, Champaign, IL (2023).