Have a personal or library account? Click to login
Optimization of the dimensions of a tapered thin-walled cantilever, aimed at reaching a maximum critical buckling load Cover

Optimization of the dimensions of a tapered thin-walled cantilever, aimed at reaching a maximum critical buckling load

By: Józef Szybiński and  Piotr Ruta  
Open Access
|Nov 2025

References

  1. Andrade, A., Camotim, D. (2005). Lateral-torsional buckling of singly symmetric tapered beams: Theory and applications. Journal of Engineering Mechanics, 131(6), 586–597. doi: 10.1061/(ASCE)0733-9399(2005)131:6(586).
  2. Benyamina, A.B., Meftah, S.A., Mohri, F., Daya, E.M. (2013). Analytical solutions attempt for lateral torsional buckling of doubly symmetric web-tapered I-beams. Engineering Structures, 56, 1207–1219. doi: 10.1016/j.engstruct.2013.06.036.
  3. Andrade, A., Camotim, D., Dinis, P.B. (2007). Lateral-torsional buckling of singly symmetric web-tapered thin-walled I-beams: 1D model vs. shell FEA. Computers & Structures, 85(17–18), 1343–1359. doi: 10.1016/j.compstruc.2006.08.079.
  4. Asgarian, B., Soltani, M., Mohri, F. (2013). Lateral-torsional buckling of tapered thin-walled beams with arbitrary cross-sections, Thin-Walled Structures, 62, 96–108. doi: 10.1016/j.tws.2012.06.007.
  5. Branford, M.A. (1989). Inelastic buckling of tapered monosymmetric I-beams. Engineering Structures, 11(2), 119–126. doi: 10.1016/0141-0296(89)90021-7.
  6. Challamel, N., Andrade, A., Camotim, D. (2007). An analytical study on the lateral-torsional buckling of linearly tapered cantilever strip beams. International Journal of Structural Stability and Dynamics, 7(3), 441–456. doi: 10.1142/S0219455407002368.
  7. Osmani, A., Meftah, S.A. (2018). Lateral buckling of tapered thin walled bi-symmetric beams under combined axial and bending loads with shear deformations allowed. Engineering Structures, 165(15), 76–87. doi: 10.1016/j.engstruct.2018.03.009.
  8. Raftoyiannis, I.G., Adamakos, T. (2010). Critical lateral-torsional buckling moments of steel web-tapered I-beams. The Open Construction and Building Technology Journal, 4, 105–112. doi: 10.2174/18748368010040100105.
  9. Rezaiee-Pajand, M., Masoodi, A.R., Alepaighambar, A. (2018). Lateral-torsional buckling of functionally graded tapered I-beams considering lateral bracing. Steel and Composite Structures, 28(4), 403–414. doi: 10.12989/scs.2018.28.4.403.
  10. Soltani, M. (2022). A novel approach for lateral buckling assessment of double tapered thin-walled laminated composite I-beams. Mechanics of Advanced Composite Structures, 9, 11–23. doi: 10.22075/macs.2021.22105.1313.
  11. Soltani, M., Asgarian, B. (2021). Exact stiffness matrices for lateral–torsional buckling of doubly symmetric tapered beams with axially varying material properties. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 45, 589–609. doi: 10.1007/s40996-020-00402-z.
  12. Soltani, M., Asgarian, B. (2020). Lateral-torsional stability analysis of a simply supported axially functionally graded beam with a tapered I-section. Mechanics of Composite Materials, 56, 39–54. doi: 10.1007/s11029-020-09859-5.
  13. Soltani, M., Asgarian, B., Mohri, F. (2019). Improved finite element model for lateral stability analysis of axially functionally graded nonprismatic I-beams. International Journal of Structural Stability and Dynamics, 19(9), 1950108. doi: 10.1142/S0219455419501086.
  14. Soltani, M., Gharebaghi, S.A., Mohri, F. (2018). Lateral stability analysis of steel tapered thin-walled beams under various boundary conditions. Journal of Numerical Methods in Civil Engineering, 3(1), 13–25. doi: 10.29252/nmce.3.1.13.
  15. Zhang, L., Tong, G.S. (2008). Lateral buckling of web-tapered I-beams: A new theory. Journal of Constructional Steel Research, 64(12), 1379–1393. doi: 10.1016/j.jcsr.2008.01.014.
  16. El-Mahdy, G.M., El-Saadawy, M.M. (2015). Ultimate strength of singly symmetrical I-section steel beams with variable flange ratio. Thin-Walled Structures, 87, 149–157. doi: 10.1016/j.tws.2014.11.016.
  17. Ruta, P. (1999). Application of Chebyshev series to solution of non-prismatic beam vibration problems. Journal of Sound and Vibration, 227(2), 449–467. doi: 10.1006/jsvi.1999.2348.
  18. Ruta, P. (2002). Dynamic stability problem of non-prismatic rod. Journal of Sound and Vibration, 250(3), 445–464. doi: 10.1006/jsvi.2001.3954.
  19. Ruta, P. (2006). The application of Chebyshev polynomials to the solution of the nonprismatic Timoshenko beam vibration problem. Journal of Sound and Vibration, 296(1–2), 243–263. doi: 10.1016/j.jsv.2006.02.011.
  20. Ruta, P., Szybiński, J. (2014). Free vibration of non-prismatic sandwich beams using the Chebyshev series. Procedia Engineering, 91, 105–111. doi: 10.1016/j.proeng.2014.12.022.
  21. Ruta, P., Szybiński, J. (2015). Lateral stability of bending non-prismatic thin-walled beams using orthogonal series. Procedia Engineering, 111, 694–701. doi: 10.1016/j.proeng.2015.07.134.
  22. Ruta, P., Szybiński, J. (2015). Nonlinear analysis of nonprismatic Timoshenko beam for different geometric nonlinearity models. International Journal of Mechanical Sciences, 101–102, 349–362. doi: 10.1016/j.ijmecsci.2015.07.020.
  23. Szybiński, J., Ruta, P. (2021). An analysis of the effect of a change in the support point location on the vibration of thin-walled beams. International Journal of Structural Stability and Dynamics, 21(9), 2150125. doi: 10.1142/S021945542150125X.
  24. Szybiński, J., Ruta, P. (2019). Analysis of thin-walled beams with variable monosymmetric cross section by means of Legendre polynomials. Studia Geotechnica et Mechanica, 41(1), 1–12. doi: 10.2478/sgem-2019-0001.
  25. Szybiński, J., Ruta, P. (2022). Effect of a “slight” curvature of the axis of a thin-walled nonprismatic beam on its free vibration. International Journal of Structural Stability and Dynamics, 22(7), 2250043. doi: 10.1142/S0219455422500432.
  26. SOFiSTiK v2024. (2024). User’s Manuals. SOFISTIK AG. Oberschleissheim, Germany.
  27. Wilde, P. (1968). The torsion of thin-walled bars with variable cross-section. Archives of Mechanics, 4(20), 431–443.
  28. Lewanowicz, S. (1976). Construction of a recurrence relation of the lowest order for coefficients of the Gegenbauer series. Applicationes Mathematicae, 15(3), 345–396.
  29. Paszkowski, S. (1975). The numerical application of Chebyshev polynomials and series (in Polish). Warsaw: Polish Scientific Publishers.
  30. Wolfram Research, Inc., Mathematica, Version 14.0, Champaign, IL (2023).
DOI: https://doi.org/10.2478/sgem-2025-0021 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Submitted on: May 12, 2025
Accepted on: Sep 3, 2025
Published on: Nov 17, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Józef Szybiński, Piotr Ruta, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

AHEAD OF PRINT