References
- Fahmy, A., El Naggar, M.H. (2017). Axial performance of helical tapered piles in sand. Geotechnical and Geological Engineering, 35(4), 1549-1576. doi: 10.1007/s10706-017-0192-1.
- Naggar, M.H.E., Sakr, M. (2000). Evaluation of axial performance of tapered piles from centrifuge tests. Canadian Geotechnical Journal, 37(6), 1295-1308. doi: 10.1139/t00-049.
- Sakr, M., Hesham El Naggar, M. (2003). Centrifuge modeling of tapered piles in sand. Geotechnical Testing Journal, 26(1), 8935. doi: 10.1520/GTJ11106J.
- Wei, J., El Naggar, M.H. (1998). Experimental study of axial behaviour of tapered piles. Canadian Geotechnical Journal, 35(4), 641-654. doi: 10.1139/t98-033.
- Randolph, M.F., Carter, J.P., Wroth, C.P. (1979). Driven piles in clay – The effects of installation and subsequent consolidation. Géotechnique, 29(4), 361-393. doi: 10.1680/geot.1979.29.4.361.
- Robinsky, E.I., Morrison, C.F. (1964). Sand displacement and compaction around model friction piles. Canadian Geotechnical Journal, 1(2), 81-93. doi: 10.1139/t64-002.
- Beijer Lundberg, A., Dijkstra, J., van Tol, F. (2012). On the Modelling of Piles in Sand in the Small Geotechnical Centrifuge. Delft University of Technology, Delft, The Netherlands, p. 10.
- Fu, S., Yang, Z.X., Jardine, R.J., Guo, N. (2023). Large-deformation finite-element simulation of deformation and strain fields resulting from closed-end displacement pile installation in sand. Journal of Geotechnical and Geoenvironmental Engineering, 149(6), 04023038. doi: 10.1061/JGGEFK.GTENG-10480.
- Yi, J.T., Liu, F., Zhang, T.B., Yao, K., Zhen, G. (2021). A large deformation finite element investigation of pile group installations with consideration of intervening consolidation. Applied Ocean Research, 112, 102698. doi: 10.1016/j.apor.2021.102698.
- Hamann, T., Qiu, G., Grabe, J. (2015). Application of a Coupled Eulerian–Lagrangian approach on pile installation problems under partially drained conditions. Computers and Geotechnics, 63, 279-290. doi: 10.1016/j.compgeo.2014.10.006.
-
[11]
Konkol, J., Bałachowski, L. (2017). Influence of installation effects on pile bearing capacity in cohesive soils – large deformation analysis via finite element method. Studia Geotechnica et Mechanica, 39(1), 27-38. doi: 10.1515/sgem-2017-0003
Konkol J. Bałachowski L. 2017 Influence of installation effects on pile bearing capacity in cohesive soils – large deformation analysis via finite element method Studia Geotechnica et Mechanica 39 1 27 38 10.1515/sgem-2017-0003
- Yu, H., Zhou, H., Sheil, B., Liu, H. (2022). Finite element modelling of helical pile installation and its influence on uplift capacity in strain softening clay. Canadian Geotechnical Journal, 59(12), 2050-2066. doi: 10.1139/cgj-2021-0527.
- Galavi, V., Martinelli, M. (2024). MPM simulation of the installation of an impact-driven pile in dry sand and subsequent axial bearing capacity. Journal of Geotechnical and Geoenvironmental Engineering, 150(4), 04024019. doi: 10.1061/JGGEFK.GTENG-11592.
- Gao, L., Guo, N., Yang, Z. X., Jardine, R. J. (2022). MPM modeling of pile installation in sand: Contact improvement and quantitative analysis. Computers and Geotechnics, 151, 104943. doi: 10.1016/j.compgeo.2022.104943.
- Phuong, N.T.V., Tol, A.F., van Elkadi, A.S.K., Rohe, A. (2016). Numerical investigation of pile installation effects in sand using material point method. Computers and Geotechnics, 73, 58-71. doi: 10.1016/j.compgeo.2015.11.012.
- Duan, N., Cheng, Y.P., Lu, M., Wang, Z. (2021). DEM investigation of sand response during displacement pile installation. Ocean Engineering, 230, 109040. doi: 10.1016/j.oceaneng.2021.109040.
- Guo, N., Liu, H.F., Li, B.J., Yang, Z.X. (2024). DEM study of the stress fields around the closed-ended displacement pile driven in sand. Canadian Geotechnical Journal, 61(3), 549-561. doi: 10.1139/cgj-2023-0025.
- Engin, H. K., Brinkgreve, R.B.J., Van Tol, A.F. (2015). Simplified numerical modelling of pile penetration - the press-replace technique: Simplified numerical modelling of pile penetration – PR technique. International Journal for Numerical and Analytical Methods in Geomechanics, 39(15), 1713-1734. doi: 10.1002/nag.2376.
- Goudarzy, M., Lavasan, A. A. (2024). Challenges in numerical modelling of screw piles installation and vertical loading based on centrifuge testing. ISSMGE. doi: 10.53243/ECPMG2024-146.
- OPTUM Engineering. (2020). OPTUM G2 User Manual. https://www.optumengineering.com/.
- LimitState Ltd. (2021). LimitState GEO User Manual. https://www.limitstate.com/geo.
- Gilber, M., Smith, C. C., Haslam, I. W., Pritchard, T. J. (2010). Application of discontinuity layout optimization to geotechnical limit analysis problems. Proceedings of the 7th European Conference on Numerical Methods in Geotechnical Engineering.
- Bałachowski, L., Kabeta, W.F., Thorel, L., Blanc, M., Dubreucq, T. (2024). Centrifuge modelling of tapered wall jacked into medium dense sand. New Developments on Structural Design. XVIII European Conference on Soil Mechanics and Geotechnical Engineering, Lisbon.
- Schanz, T., Vermeer, P.A., Bonnier, P.G. (2019). The hardening soil model: Formulation and verification. In R.B.J. Brinkgreve (Ed.), Beyond 2000 in Computational Geotechnics (1st ed., pp. 281-296). CRC Press (Taylor & Francis Group), London, UK. doi: 10.1201/9781315138206-27.
- Andria-Ntoanina, I., Canou, J., Dupla, J. (2010). Caractérisation mécanique du sable de Fontainebleau NE34 à l’appareil triaxial sous cisaillement monotone. Laboratoire Navier–Géotechnique. CERMES, ENPC/LCPC. Routledge, London, UK.
- Broere, W., Van Tol, A.F. (2006). Modelling the bearing capacity of displacement piles in sand. Proceedings of the Institution of Civil Engineers – Geotechnical Engineering, 159(3), 195-206. doi: 10.1680/geng.2006.159.3.195.