Have a personal or library account? Click to login
Bearing capacity of tapered walls: Physical modeling and numerical analysis Cover

Bearing capacity of tapered walls: Physical modeling and numerical analysis

Open Access
|Aug 2025

References

  1. Fahmy, A., El Naggar, M.H. (2017). Axial performance of helical tapered piles in sand. Geotechnical and Geological Engineering, 35(4), 1549-1576. doi: 10.1007/s10706-017-0192-1.
  2. Naggar, M.H.E., Sakr, M. (2000). Evaluation of axial performance of tapered piles from centrifuge tests. Canadian Geotechnical Journal, 37(6), 1295-1308. doi: 10.1139/t00-049.
  3. Sakr, M., Hesham El Naggar, M. (2003). Centrifuge modeling of tapered piles in sand. Geotechnical Testing Journal, 26(1), 8935. doi: 10.1520/GTJ11106J.
  4. Wei, J., El Naggar, M.H. (1998). Experimental study of axial behaviour of tapered piles. Canadian Geotechnical Journal, 35(4), 641-654. doi: 10.1139/t98-033.
  5. Randolph, M.F., Carter, J.P., Wroth, C.P. (1979). Driven piles in clay – The effects of installation and subsequent consolidation. Géotechnique, 29(4), 361-393. doi: 10.1680/geot.1979.29.4.361.
  6. Robinsky, E.I., Morrison, C.F. (1964). Sand displacement and compaction around model friction piles. Canadian Geotechnical Journal, 1(2), 81-93. doi: 10.1139/t64-002.
  7. Beijer Lundberg, A., Dijkstra, J., van Tol, F. (2012). On the Modelling of Piles in Sand in the Small Geotechnical Centrifuge. Delft University of Technology, Delft, The Netherlands, p. 10.
  8. Fu, S., Yang, Z.X., Jardine, R.J., Guo, N. (2023). Large-deformation finite-element simulation of deformation and strain fields resulting from closed-end displacement pile installation in sand. Journal of Geotechnical and Geoenvironmental Engineering, 149(6), 04023038. doi: 10.1061/JGGEFK.GTENG-10480.
  9. Yi, J.T., Liu, F., Zhang, T.B., Yao, K., Zhen, G. (2021). A large deformation finite element investigation of pile group installations with consideration of intervening consolidation. Applied Ocean Research, 112, 102698. doi: 10.1016/j.apor.2021.102698.
  10. Hamann, T., Qiu, G., Grabe, J. (2015). Application of a Coupled Eulerian–Lagrangian approach on pile installation problems under partially drained conditions. Computers and Geotechnics, 63, 279-290. doi: 10.1016/j.compgeo.2014.10.006.
  11. [11] Konkol, J., Bałachowski, L. (2017). Influence of installation effects on pile bearing capacity in cohesive soils – large deformation analysis via finite element method. Studia Geotechnica et Mechanica, 39(1), 27-38. doi: 10.1515/sgem-2017-0003
    Konkol J. Bałachowski L. 2017 Influence of installation effects on pile bearing capacity in cohesive soils – large deformation analysis via finite element method Studia Geotechnica et Mechanica 39 1 27 38 10.1515/sgem-2017-0003
  12. Yu, H., Zhou, H., Sheil, B., Liu, H. (2022). Finite element modelling of helical pile installation and its influence on uplift capacity in strain softening clay. Canadian Geotechnical Journal, 59(12), 2050-2066. doi: 10.1139/cgj-2021-0527.
  13. Galavi, V., Martinelli, M. (2024). MPM simulation of the installation of an impact-driven pile in dry sand and subsequent axial bearing capacity. Journal of Geotechnical and Geoenvironmental Engineering, 150(4), 04024019. doi: 10.1061/JGGEFK.GTENG-11592.
  14. Gao, L., Guo, N., Yang, Z. X., Jardine, R. J. (2022). MPM modeling of pile installation in sand: Contact improvement and quantitative analysis. Computers and Geotechnics, 151, 104943. doi: 10.1016/j.compgeo.2022.104943.
  15. Phuong, N.T.V., Tol, A.F., van Elkadi, A.S.K., Rohe, A. (2016). Numerical investigation of pile installation effects in sand using material point method. Computers and Geotechnics, 73, 58-71. doi: 10.1016/j.compgeo.2015.11.012.
  16. Duan, N., Cheng, Y.P., Lu, M., Wang, Z. (2021). DEM investigation of sand response during displacement pile installation. Ocean Engineering, 230, 109040. doi: 10.1016/j.oceaneng.2021.109040.
  17. Guo, N., Liu, H.F., Li, B.J., Yang, Z.X. (2024). DEM study of the stress fields around the closed-ended displacement pile driven in sand. Canadian Geotechnical Journal, 61(3), 549-561. doi: 10.1139/cgj-2023-0025.
  18. Engin, H. K., Brinkgreve, R.B.J., Van Tol, A.F. (2015). Simplified numerical modelling of pile penetration - the press-replace technique: Simplified numerical modelling of pile penetration – PR technique. International Journal for Numerical and Analytical Methods in Geomechanics, 39(15), 1713-1734. doi: 10.1002/nag.2376.
  19. Goudarzy, M., Lavasan, A. A. (2024). Challenges in numerical modelling of screw piles installation and vertical loading based on centrifuge testing. ISSMGE. doi: 10.53243/ECPMG2024-146.
  20. OPTUM Engineering. (2020). OPTUM G2 User Manual. https://www.optumengineering.com/.
  21. LimitState Ltd. (2021). LimitState GEO User Manual. https://www.limitstate.com/geo.
  22. Gilber, M., Smith, C. C., Haslam, I. W., Pritchard, T. J. (2010). Application of discontinuity layout optimization to geotechnical limit analysis problems. Proceedings of the 7th European Conference on Numerical Methods in Geotechnical Engineering.
  23. Bałachowski, L., Kabeta, W.F., Thorel, L., Blanc, M., Dubreucq, T. (2024). Centrifuge modelling of tapered wall jacked into medium dense sand. New Developments on Structural Design. XVIII European Conference on Soil Mechanics and Geotechnical Engineering, Lisbon.
  24. Schanz, T., Vermeer, P.A., Bonnier, P.G. (2019). The hardening soil model: Formulation and verification. In R.B.J. Brinkgreve (Ed.), Beyond 2000 in Computational Geotechnics (1st ed., pp. 281-296). CRC Press (Taylor & Francis Group), London, UK. doi: 10.1201/9781315138206-27.
  25. Andria-Ntoanina, I., Canou, J., Dupla, J. (2010). Caractérisation mécanique du sable de Fontainebleau NE34 à l’appareil triaxial sous cisaillement monotone. Laboratoire Navier–Géotechnique. CERMES, ENPC/LCPC. Routledge, London, UK.
  26. Broere, W., Van Tol, A.F. (2006). Modelling the bearing capacity of displacement piles in sand. Proceedings of the Institution of Civil Engineers – Geotechnical Engineering, 159(3), 195-206. doi: 10.1680/geng.2006.159.3.195.
DOI: https://doi.org/10.2478/sgem-2025-0019 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 46 - 61
Submitted on: Dec 5, 2024
Accepted on: May 22, 2025
Published on: Aug 14, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Worku Firomsa Kabeta, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.