References
- Baker, G.L., Gollub, J.P. (1998). Introduction to the Dynamics of Chaotic Systems. Wydawnictwo Naukowe PWN, Warszawa, (in Polish).
- Ott, E. (1997). Chaos in Dynamical Systems. Wydawnictwo Naukowo Techniczne, Warszawa, (in Polish).
- Łuczko, J. (2008). Regular and Chaotic Vibrations in Nonlinear Mechanical Systems. Kraków University of Technology Publishing House, Kraków, (in Polish).
- Glabisz, W. (2003). Mathematica in Structure Mechanics Problems. Wrocław University of Technology Publishing House, Wrocław, (in Polish).
- Awrejcewicz, J. (1997). Secrets of Nonlinear Dynamics. Lódź University of Technology Publishing House, Lódź, (in Polish).
- Argyris, J., Faust, G., Hase, M. (1994). An Exploration of Chaos. North-Holland Elsevier, Amsterdam.
- Parker T.S., Chua L.O. (1989). Practical Numerical Algorithms for Chaotic Systems. Springer-Verlag, New York.
- Medio, A., Lines, M. (2001). Nonlinear Dynamics. Cambridge University Press, United Kingdom.
- Permann, D., Hamilton, I. (1992). Wavelet Analysis of the time series for the Duffing oscillator: The detection of order within chaos. Physical Review Letters, 69, 2607-2610.
- Glabisz, W. (2004). Packet Wavelet Analysis in Mechanics Problems. Wrocław University of Technology Publishing House, Wrocław, (in Polish).
- Staszewski, W.J., Worden, K. (1996). The analysis of chaotic behaviour using fractal and wavelet theory. Proceedings of the International on Nonlinearity, Bifurcation and Chaos, Lódź, Poland, pp. 222-226.
- Jibing, Z., Hangshan, G., Yinchao, G. (1998). Application of wavelet transform to bifurcation and chaos study. Applied Mathematics and Mechanics, 19, 593-599.
- Billings, S.A., Coca, D. (1999). Discrete Wavelet models for identification and Qualitative analysis of chaotic systems. International Journal of Bifurcation and Chaos, 9(7), 1263-1284.
- Nakao, H., Mishiro, T., Yamada, M. (2001). Visualization of correlation cascade in spatiotemporal chaos using wavelets. International Journal of Bifurcation and Chaos, 11(5), 1483-1493.
- Constantine, W.L.B., Reinhall, P.G. (2001). Wavelet based in band denoising technique for chaotic sequences. International Journal of Bifurcation and Chaos, 11(2), 483-495.
- Mastroddi, F., Bettoli, A. (1999). Wavelet analysis for Hopf bifurcations whit aeroelastic applications. Journal of Sound and Vibration, 228, 199-210.
- Shi, Z., Yang, X., Li, Y., Yu, G. (2021). Wavelet-based Synchroextracting Transform: An effective TFA tool for machinery fault diagnosis. Control Engineering Practice, 144, 104884.
- Varanis, M., Balthazar, J.M., Tusset, A., Ribeiro, M.A., De Oliveira, C. (2024). Signal analysis in chaotic systems: A comprehensive assessment through time-frequency analysis. New Insights on Oscillators and Their Applications to Engineering and Science, IntechOpen, London, UK. doi: 10.5772/intechopen.111087.
- Alpert, B.K, Beylkin, G., Gines, D., Vozovoi, L. (2002). Adaptive solution of partial differential equations in multiwavelet bases. Journal of Computational Physics, 182, 149-190.
- Alpert, B.K. (1993). A class of bases in L2 for the sparse representation of integral operators. SIAM Journal on Mathematical Analysis, 24, 246-262.
- Strela, V. (1996). Multiwavelts: Theory and Applications. (PhD thesis). Massachusetts Institute of Technology, Cambridge, Massachusetts, US.
- Chui, C.K., Lian J. (1996). A study on orthonormal multiwavelets. Applied Numerical Mathematics, 20, 273-298.
- Fann, G., Beylkin, G., Harrison, R.J., Jordan K.E. (2004). Singular operators in multiwavelets bases. IBM Journal of Research and Development, 48(2), 161-171.
- Keinert, F. (2004). Wavelets and Multiwavelets. Chapman & Hall/CRC Press Company, Boca Raton, Florida.
- Averbuch, A., Israeli, M., Vozovoi, L. (1999). Solution of time-dependent diffusion equations with variable coefficients using multiwavelets. Journal of Computational Physics, 150, 394-424.
- Holmes, P. (1979). Nonlinear oscillator with a strange attractore. Philosophical Transactions of the Royal Society of London, 294, 419-448.
- Holmes, P., Moon, F.C. (1983). Strange attractors and chaos in nonlinear mechanics. Journal of Applide Mechanics, 50, 1021-1032.
- Koruba, Z., Osiecki, J. (2007). Elements of Advanced Mechanics. Świętokrzyski University of Technology Publishing House, Kielce, (in Polish).
- Napiórkowska-Ałykow, M., Glabisz, W. (2005). Parametric identification procedure based on the Walsh wavelet packet approach for estimation of signal function derivatives. Archives of Civil and Mechanical Engineering, 5(4), 5-26.