Have a personal or library account? Click to login
Multiwavelet and multiwavelet packet analysis in qualitative assessment of the chaotic states Cover

Multiwavelet and multiwavelet packet analysis in qualitative assessment of the chaotic states

Open Access
|Aug 2025

References

  1. Baker, G.L., Gollub, J.P. (1998). Introduction to the Dynamics of Chaotic Systems. Wydawnictwo Naukowe PWN, Warszawa, (in Polish).
  2. Ott, E. (1997). Chaos in Dynamical Systems. Wydawnictwo Naukowo Techniczne, Warszawa, (in Polish).
  3. Łuczko, J. (2008). Regular and Chaotic Vibrations in Nonlinear Mechanical Systems. Kraków University of Technology Publishing House, Kraków, (in Polish).
  4. Glabisz, W. (2003). Mathematica in Structure Mechanics Problems. Wrocław University of Technology Publishing House, Wrocław, (in Polish).
  5. Awrejcewicz, J. (1997). Secrets of Nonlinear Dynamics. Lódź University of Technology Publishing House, Lódź, (in Polish).
  6. Argyris, J., Faust, G., Hase, M. (1994). An Exploration of Chaos. North-Holland Elsevier, Amsterdam.
  7. Parker T.S., Chua L.O. (1989). Practical Numerical Algorithms for Chaotic Systems. Springer-Verlag, New York.
  8. Medio, A., Lines, M. (2001). Nonlinear Dynamics. Cambridge University Press, United Kingdom.
  9. Permann, D., Hamilton, I. (1992). Wavelet Analysis of the time series for the Duffing oscillator: The detection of order within chaos. Physical Review Letters, 69, 2607-2610.
  10. Glabisz, W. (2004). Packet Wavelet Analysis in Mechanics Problems. Wrocław University of Technology Publishing House, Wrocław, (in Polish).
  11. Staszewski, W.J., Worden, K. (1996). The analysis of chaotic behaviour using fractal and wavelet theory. Proceedings of the International on Nonlinearity, Bifurcation and Chaos, Lódź, Poland, pp. 222-226.
  12. Jibing, Z., Hangshan, G., Yinchao, G. (1998). Application of wavelet transform to bifurcation and chaos study. Applied Mathematics and Mechanics, 19, 593-599.
  13. Billings, S.A., Coca, D. (1999). Discrete Wavelet models for identification and Qualitative analysis of chaotic systems. International Journal of Bifurcation and Chaos, 9(7), 1263-1284.
  14. Nakao, H., Mishiro, T., Yamada, M. (2001). Visualization of correlation cascade in spatiotemporal chaos using wavelets. International Journal of Bifurcation and Chaos, 11(5), 1483-1493.
  15. Constantine, W.L.B., Reinhall, P.G. (2001). Wavelet based in band denoising technique for chaotic sequences. International Journal of Bifurcation and Chaos, 11(2), 483-495.
  16. Mastroddi, F., Bettoli, A. (1999). Wavelet analysis for Hopf bifurcations whit aeroelastic applications. Journal of Sound and Vibration, 228, 199-210.
  17. Shi, Z., Yang, X., Li, Y., Yu, G. (2021). Wavelet-based Synchroextracting Transform: An effective TFA tool for machinery fault diagnosis. Control Engineering Practice, 144, 104884.
  18. Varanis, M., Balthazar, J.M., Tusset, A., Ribeiro, M.A., De Oliveira, C. (2024). Signal analysis in chaotic systems: A comprehensive assessment through time-frequency analysis. New Insights on Oscillators and Their Applications to Engineering and Science, IntechOpen, London, UK. doi: 10.5772/intechopen.111087.
  19. Alpert, B.K, Beylkin, G., Gines, D., Vozovoi, L. (2002). Adaptive solution of partial differential equations in multiwavelet bases. Journal of Computational Physics, 182, 149-190.
  20. Alpert, B.K. (1993). A class of bases in L2 for the sparse representation of integral operators. SIAM Journal on Mathematical Analysis, 24, 246-262.
  21. Strela, V. (1996). Multiwavelts: Theory and Applications. (PhD thesis). Massachusetts Institute of Technology, Cambridge, Massachusetts, US.
  22. Chui, C.K., Lian J. (1996). A study on orthonormal multiwavelets. Applied Numerical Mathematics, 20, 273-298.
  23. Fann, G., Beylkin, G., Harrison, R.J., Jordan K.E. (2004). Singular operators in multiwavelets bases. IBM Journal of Research and Development, 48(2), 161-171.
  24. Keinert, F. (2004). Wavelets and Multiwavelets. Chapman & Hall/CRC Press Company, Boca Raton, Florida.
  25. Averbuch, A., Israeli, M., Vozovoi, L. (1999). Solution of time-dependent diffusion equations with variable coefficients using multiwavelets. Journal of Computational Physics, 150, 394-424.
  26. Holmes, P. (1979). Nonlinear oscillator with a strange attractore. Philosophical Transactions of the Royal Society of London, 294, 419-448.
  27. Holmes, P., Moon, F.C. (1983). Strange attractors and chaos in nonlinear mechanics. Journal of Applide Mechanics, 50, 1021-1032.
  28. Koruba, Z., Osiecki, J. (2007). Elements of Advanced Mechanics. Świętokrzyski University of Technology Publishing House, Kielce, (in Polish).
  29. Napiórkowska-Ałykow, M., Glabisz, W. (2005). Parametric identification procedure based on the Walsh wavelet packet approach for estimation of signal function derivatives. Archives of Civil and Mechanical Engineering, 5(4), 5-26.
DOI: https://doi.org/10.2478/sgem-2025-0017 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 13 - 26
Submitted on: Mar 6, 2025
Accepted on: Jun 24, 2025
Published on: Aug 14, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Kamila Jarczewska, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.