Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18
![Bifurcation diagram (a) and variation function of max. Lyapunov exponent (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
10
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.5em}\omega =10\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_018.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKDJE4NBHX%2F20251210%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251210T203100Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBQaDGV1LWNlbnRyYWwtMSJGMEQCIGJJtEw7IHnJZd%2BJN%2BEiJFng39M9MwgBkQJ9sT99wdvSAiBgrpncnDO69WPK4lmpSzlZel3wLE5f%2BH65wvbfgSlRbSrFBQjd%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAIaDDk2MzEzNDI4OTk0MCIMlPVmMkMeiEixSYmhKpkF%2BSuxH4uOpgMka0RPipveu12pNiQSsUfFCLq%2F%2BSHWSgrl3bAPsC1ttyJwhYeTKtGDZSAFWJDCq10mkKAcYsugbQT2TvIE34ns8fPw8jHhEy9om9Zex%2B61ilC16Uj7fABLtsrvGQdnFasLNo%2FRXBqzynSOiNZbGwdGnHpcASCbr6Ks%2F2U4fOMeOjrlSYjdsMCMrMuKDF%2FpWPdNyAFKIJPfoBc9DMVugmIkV2v4kL7OCNwLJifDcS2Wo%2BxWVTNEgmeQZ3jvI3VZcYe607TMgoHRHiKuSGAkswqRjAH2fHjrMlAPeRyk1zfs8s6K2W8jOH7chSa6EMyWscTc4xjs3%2BVoa8KU0tRrNKZ5rPoOWUeFrESxmdNViyCX8V8GGkzDS2VAIFM9p5Qn6IBhOWV6S4CqpE9vHc1Sd9yUmQYp4%2BOh8cv3R%2BJQHp4IJZdNlj%2FzpgpPUehp4230hqpQg8ShQXkTM3%2BqbCLaJwdaN0naDvMuTFFbrxtYmddU9Ip5xGDhyp366WXS2O%2Bh3TM6UVdgY%2FXBkcSBv13O9PBejqSPpKb3WBsIUlkGo4SIoLE4La12DV44jTi25fWL2TQSz%2BEeXAJ%2BdhvRpMADVgfUit8veKpyzPDbkrxxHWU5lBPULQjdptdVQ6cRB93DtqMf9gV39V9k1NlBpzAaoQno0QH775gA25Gbq9SlNNSg%2BWO6tQX0GK8Yfpn6611d4259bIs3zn1OFIdFEkxSh28gg48Lym%2FVXkeJnia6NMnoCFrklVKTVqaseUtS2YVkSmtOkjEnd5Vr%2F1qWMHlijXN2uEQ2H2o%2FUyYyHzG7PDNsLTghHTmIW1tdlE2BmsJ4xwd6mo1RS4EzAra%2FOmctYboUVJn1Bo0Eecw6TZHpbmeDFxowl5%2FnyQY6sgGazrCd18rE%2Fh%2Bx1s11aIyrc6jA01eLHk8Iq%2FiD0KYi0BovSTeS4%2BwRLxmPj0VBtyIMAtwRqoclEPoIX%2BvIW04T3pSt9ZqptTLvJI5nspjZqv682xSTWFa26%2FpXjYLFlTmvRS20l0db73Sezz891obyd8wP%2FqdPBn3NdiehOtE3VyBqL1fjENkFt6W8HoxLvPN8S5HgZ0e6gy441ZUKA118%2BdjGOlG5J03v4QoyA%2BVzBPAb&X-Amz-Signature=12a9e27701d9fa04f0c3c63316fb704a92bb1aed5ec2227f411827706f4db0ac&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 19
![Bifurcation diagram (a)and variation function of max. Lyapunov exponent (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
15
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.5em}\omega =15\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_019.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKDJE4NBHX%2F20251210%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251210T203100Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBQaDGV1LWNlbnRyYWwtMSJGMEQCIGJJtEw7IHnJZd%2BJN%2BEiJFng39M9MwgBkQJ9sT99wdvSAiBgrpncnDO69WPK4lmpSzlZel3wLE5f%2BH65wvbfgSlRbSrFBQjd%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAIaDDk2MzEzNDI4OTk0MCIMlPVmMkMeiEixSYmhKpkF%2BSuxH4uOpgMka0RPipveu12pNiQSsUfFCLq%2F%2BSHWSgrl3bAPsC1ttyJwhYeTKtGDZSAFWJDCq10mkKAcYsugbQT2TvIE34ns8fPw8jHhEy9om9Zex%2B61ilC16Uj7fABLtsrvGQdnFasLNo%2FRXBqzynSOiNZbGwdGnHpcASCbr6Ks%2F2U4fOMeOjrlSYjdsMCMrMuKDF%2FpWPdNyAFKIJPfoBc9DMVugmIkV2v4kL7OCNwLJifDcS2Wo%2BxWVTNEgmeQZ3jvI3VZcYe607TMgoHRHiKuSGAkswqRjAH2fHjrMlAPeRyk1zfs8s6K2W8jOH7chSa6EMyWscTc4xjs3%2BVoa8KU0tRrNKZ5rPoOWUeFrESxmdNViyCX8V8GGkzDS2VAIFM9p5Qn6IBhOWV6S4CqpE9vHc1Sd9yUmQYp4%2BOh8cv3R%2BJQHp4IJZdNlj%2FzpgpPUehp4230hqpQg8ShQXkTM3%2BqbCLaJwdaN0naDvMuTFFbrxtYmddU9Ip5xGDhyp366WXS2O%2Bh3TM6UVdgY%2FXBkcSBv13O9PBejqSPpKb3WBsIUlkGo4SIoLE4La12DV44jTi25fWL2TQSz%2BEeXAJ%2BdhvRpMADVgfUit8veKpyzPDbkrxxHWU5lBPULQjdptdVQ6cRB93DtqMf9gV39V9k1NlBpzAaoQno0QH775gA25Gbq9SlNNSg%2BWO6tQX0GK8Yfpn6611d4259bIs3zn1OFIdFEkxSh28gg48Lym%2FVXkeJnia6NMnoCFrklVKTVqaseUtS2YVkSmtOkjEnd5Vr%2F1qWMHlijXN2uEQ2H2o%2FUyYyHzG7PDNsLTghHTmIW1tdlE2BmsJ4xwd6mo1RS4EzAra%2FOmctYboUVJn1Bo0Eecw6TZHpbmeDFxowl5%2FnyQY6sgGazrCd18rE%2Fh%2Bx1s11aIyrc6jA01eLHk8Iq%2FiD0KYi0BovSTeS4%2BwRLxmPj0VBtyIMAtwRqoclEPoIX%2BvIW04T3pSt9ZqptTLvJI5nspjZqv682xSTWFa26%2FpXjYLFlTmvRS20l0db73Sezz891obyd8wP%2FqdPBn3NdiehOtE3VyBqL1fjENkFt6W8HoxLvPN8S5HgZ0e6gy441ZUKA118%2BdjGOlG5J03v4QoyA%2BVzBPAb&X-Amz-Signature=5616152b5cc8b269717fbe41b20263d77244f6b95bb91435f3fd74e739c7d88f&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 20
![Selected resolution levels j of multiwavelet signal analysis coefficients in pre-critical state P = 25 N (a) and in post-critical state P = 30 N (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
10
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.25em}\omega =10\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_020.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKDJE4NBHX%2F20251210%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251210T203100Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBQaDGV1LWNlbnRyYWwtMSJGMEQCIGJJtEw7IHnJZd%2BJN%2BEiJFng39M9MwgBkQJ9sT99wdvSAiBgrpncnDO69WPK4lmpSzlZel3wLE5f%2BH65wvbfgSlRbSrFBQjd%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAIaDDk2MzEzNDI4OTk0MCIMlPVmMkMeiEixSYmhKpkF%2BSuxH4uOpgMka0RPipveu12pNiQSsUfFCLq%2F%2BSHWSgrl3bAPsC1ttyJwhYeTKtGDZSAFWJDCq10mkKAcYsugbQT2TvIE34ns8fPw8jHhEy9om9Zex%2B61ilC16Uj7fABLtsrvGQdnFasLNo%2FRXBqzynSOiNZbGwdGnHpcASCbr6Ks%2F2U4fOMeOjrlSYjdsMCMrMuKDF%2FpWPdNyAFKIJPfoBc9DMVugmIkV2v4kL7OCNwLJifDcS2Wo%2BxWVTNEgmeQZ3jvI3VZcYe607TMgoHRHiKuSGAkswqRjAH2fHjrMlAPeRyk1zfs8s6K2W8jOH7chSa6EMyWscTc4xjs3%2BVoa8KU0tRrNKZ5rPoOWUeFrESxmdNViyCX8V8GGkzDS2VAIFM9p5Qn6IBhOWV6S4CqpE9vHc1Sd9yUmQYp4%2BOh8cv3R%2BJQHp4IJZdNlj%2FzpgpPUehp4230hqpQg8ShQXkTM3%2BqbCLaJwdaN0naDvMuTFFbrxtYmddU9Ip5xGDhyp366WXS2O%2Bh3TM6UVdgY%2FXBkcSBv13O9PBejqSPpKb3WBsIUlkGo4SIoLE4La12DV44jTi25fWL2TQSz%2BEeXAJ%2BdhvRpMADVgfUit8veKpyzPDbkrxxHWU5lBPULQjdptdVQ6cRB93DtqMf9gV39V9k1NlBpzAaoQno0QH775gA25Gbq9SlNNSg%2BWO6tQX0GK8Yfpn6611d4259bIs3zn1OFIdFEkxSh28gg48Lym%2FVXkeJnia6NMnoCFrklVKTVqaseUtS2YVkSmtOkjEnd5Vr%2F1qWMHlijXN2uEQ2H2o%2FUyYyHzG7PDNsLTghHTmIW1tdlE2BmsJ4xwd6mo1RS4EzAra%2FOmctYboUVJn1Bo0Eecw6TZHpbmeDFxowl5%2FnyQY6sgGazrCd18rE%2Fh%2Bx1s11aIyrc6jA01eLHk8Iq%2FiD0KYi0BovSTeS4%2BwRLxmPj0VBtyIMAtwRqoclEPoIX%2BvIW04T3pSt9ZqptTLvJI5nspjZqv682xSTWFa26%2FpXjYLFlTmvRS20l0db73Sezz891obyd8wP%2FqdPBn3NdiehOtE3VyBqL1fjENkFt6W8HoxLvPN8S5HgZ0e6gy441ZUKA118%2BdjGOlG5J03v4QoyA%2BVzBPAb&X-Amz-Signature=be256a66e3f0ed753d5718e8469208e4730df83b22136dcf1993339c352df082&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 21
![Multiwavelet expansion coefficients obtained at resolution level j = 6 in pre-critical state P = 25 N (a) and in post-critical state P = 30 N (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
10
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.5em}\omega =10\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_021.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKDJE4NBHX%2F20251210%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251210T203100Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBQaDGV1LWNlbnRyYWwtMSJGMEQCIGJJtEw7IHnJZd%2BJN%2BEiJFng39M9MwgBkQJ9sT99wdvSAiBgrpncnDO69WPK4lmpSzlZel3wLE5f%2BH65wvbfgSlRbSrFBQjd%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAIaDDk2MzEzNDI4OTk0MCIMlPVmMkMeiEixSYmhKpkF%2BSuxH4uOpgMka0RPipveu12pNiQSsUfFCLq%2F%2BSHWSgrl3bAPsC1ttyJwhYeTKtGDZSAFWJDCq10mkKAcYsugbQT2TvIE34ns8fPw8jHhEy9om9Zex%2B61ilC16Uj7fABLtsrvGQdnFasLNo%2FRXBqzynSOiNZbGwdGnHpcASCbr6Ks%2F2U4fOMeOjrlSYjdsMCMrMuKDF%2FpWPdNyAFKIJPfoBc9DMVugmIkV2v4kL7OCNwLJifDcS2Wo%2BxWVTNEgmeQZ3jvI3VZcYe607TMgoHRHiKuSGAkswqRjAH2fHjrMlAPeRyk1zfs8s6K2W8jOH7chSa6EMyWscTc4xjs3%2BVoa8KU0tRrNKZ5rPoOWUeFrESxmdNViyCX8V8GGkzDS2VAIFM9p5Qn6IBhOWV6S4CqpE9vHc1Sd9yUmQYp4%2BOh8cv3R%2BJQHp4IJZdNlj%2FzpgpPUehp4230hqpQg8ShQXkTM3%2BqbCLaJwdaN0naDvMuTFFbrxtYmddU9Ip5xGDhyp366WXS2O%2Bh3TM6UVdgY%2FXBkcSBv13O9PBejqSPpKb3WBsIUlkGo4SIoLE4La12DV44jTi25fWL2TQSz%2BEeXAJ%2BdhvRpMADVgfUit8veKpyzPDbkrxxHWU5lBPULQjdptdVQ6cRB93DtqMf9gV39V9k1NlBpzAaoQno0QH775gA25Gbq9SlNNSg%2BWO6tQX0GK8Yfpn6611d4259bIs3zn1OFIdFEkxSh28gg48Lym%2FVXkeJnia6NMnoCFrklVKTVqaseUtS2YVkSmtOkjEnd5Vr%2F1qWMHlijXN2uEQ2H2o%2FUyYyHzG7PDNsLTghHTmIW1tdlE2BmsJ4xwd6mo1RS4EzAra%2FOmctYboUVJn1Bo0Eecw6TZHpbmeDFxowl5%2FnyQY6sgGazrCd18rE%2Fh%2Bx1s11aIyrc6jA01eLHk8Iq%2FiD0KYi0BovSTeS4%2BwRLxmPj0VBtyIMAtwRqoclEPoIX%2BvIW04T3pSt9ZqptTLvJI5nspjZqv682xSTWFa26%2FpXjYLFlTmvRS20l0db73Sezz891obyd8wP%2FqdPBn3NdiehOtE3VyBqL1fjENkFt6W8HoxLvPN8S5HgZ0e6gy441ZUKA118%2BdjGOlG5J03v4QoyA%2BVzBPAb&X-Amz-Signature=6cf196e75b3032b7f16a27c4d147cbf69f42d1ee797f99e23c89b780bb86aa79&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 22
![Multiwavelet expansion coefficients obtained at resolution level j = 6 in pre-critical state P = 40 N (a) and in post-critical state P = 55 N (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
15
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.5em}\omega =15\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_022.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKDJE4NBHX%2F20251210%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251210T203100Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBQaDGV1LWNlbnRyYWwtMSJGMEQCIGJJtEw7IHnJZd%2BJN%2BEiJFng39M9MwgBkQJ9sT99wdvSAiBgrpncnDO69WPK4lmpSzlZel3wLE5f%2BH65wvbfgSlRbSrFBQjd%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAIaDDk2MzEzNDI4OTk0MCIMlPVmMkMeiEixSYmhKpkF%2BSuxH4uOpgMka0RPipveu12pNiQSsUfFCLq%2F%2BSHWSgrl3bAPsC1ttyJwhYeTKtGDZSAFWJDCq10mkKAcYsugbQT2TvIE34ns8fPw8jHhEy9om9Zex%2B61ilC16Uj7fABLtsrvGQdnFasLNo%2FRXBqzynSOiNZbGwdGnHpcASCbr6Ks%2F2U4fOMeOjrlSYjdsMCMrMuKDF%2FpWPdNyAFKIJPfoBc9DMVugmIkV2v4kL7OCNwLJifDcS2Wo%2BxWVTNEgmeQZ3jvI3VZcYe607TMgoHRHiKuSGAkswqRjAH2fHjrMlAPeRyk1zfs8s6K2W8jOH7chSa6EMyWscTc4xjs3%2BVoa8KU0tRrNKZ5rPoOWUeFrESxmdNViyCX8V8GGkzDS2VAIFM9p5Qn6IBhOWV6S4CqpE9vHc1Sd9yUmQYp4%2BOh8cv3R%2BJQHp4IJZdNlj%2FzpgpPUehp4230hqpQg8ShQXkTM3%2BqbCLaJwdaN0naDvMuTFFbrxtYmddU9Ip5xGDhyp366WXS2O%2Bh3TM6UVdgY%2FXBkcSBv13O9PBejqSPpKb3WBsIUlkGo4SIoLE4La12DV44jTi25fWL2TQSz%2BEeXAJ%2BdhvRpMADVgfUit8veKpyzPDbkrxxHWU5lBPULQjdptdVQ6cRB93DtqMf9gV39V9k1NlBpzAaoQno0QH775gA25Gbq9SlNNSg%2BWO6tQX0GK8Yfpn6611d4259bIs3zn1OFIdFEkxSh28gg48Lym%2FVXkeJnia6NMnoCFrklVKTVqaseUtS2YVkSmtOkjEnd5Vr%2F1qWMHlijXN2uEQ2H2o%2FUyYyHzG7PDNsLTghHTmIW1tdlE2BmsJ4xwd6mo1RS4EzAra%2FOmctYboUVJn1Bo0Eecw6TZHpbmeDFxowl5%2FnyQY6sgGazrCd18rE%2Fh%2Bx1s11aIyrc6jA01eLHk8Iq%2FiD0KYi0BovSTeS4%2BwRLxmPj0VBtyIMAtwRqoclEPoIX%2BvIW04T3pSt9ZqptTLvJI5nspjZqv682xSTWFa26%2FpXjYLFlTmvRS20l0db73Sezz891obyd8wP%2FqdPBn3NdiehOtE3VyBqL1fjENkFt6W8HoxLvPN8S5HgZ0e6gy441ZUKA118%2BdjGOlG5J03v4QoyA%2BVzBPAb&X-Amz-Signature=5e663a4d56d789792a5b6e88588bacd0e48e98b02bbfb111601f7b46642bab71&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)

















![Bifurcation diagram (a) and variation function of max. Lyapunov exponent (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
10
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.5em}\omega =10\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_018.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKDJE4NBHX%2F20251210%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251210T203100Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBQaDGV1LWNlbnRyYWwtMSJGMEQCIGJJtEw7IHnJZd%2BJN%2BEiJFng39M9MwgBkQJ9sT99wdvSAiBgrpncnDO69WPK4lmpSzlZel3wLE5f%2BH65wvbfgSlRbSrFBQjd%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAIaDDk2MzEzNDI4OTk0MCIMlPVmMkMeiEixSYmhKpkF%2BSuxH4uOpgMka0RPipveu12pNiQSsUfFCLq%2F%2BSHWSgrl3bAPsC1ttyJwhYeTKtGDZSAFWJDCq10mkKAcYsugbQT2TvIE34ns8fPw8jHhEy9om9Zex%2B61ilC16Uj7fABLtsrvGQdnFasLNo%2FRXBqzynSOiNZbGwdGnHpcASCbr6Ks%2F2U4fOMeOjrlSYjdsMCMrMuKDF%2FpWPdNyAFKIJPfoBc9DMVugmIkV2v4kL7OCNwLJifDcS2Wo%2BxWVTNEgmeQZ3jvI3VZcYe607TMgoHRHiKuSGAkswqRjAH2fHjrMlAPeRyk1zfs8s6K2W8jOH7chSa6EMyWscTc4xjs3%2BVoa8KU0tRrNKZ5rPoOWUeFrESxmdNViyCX8V8GGkzDS2VAIFM9p5Qn6IBhOWV6S4CqpE9vHc1Sd9yUmQYp4%2BOh8cv3R%2BJQHp4IJZdNlj%2FzpgpPUehp4230hqpQg8ShQXkTM3%2BqbCLaJwdaN0naDvMuTFFbrxtYmddU9Ip5xGDhyp366WXS2O%2Bh3TM6UVdgY%2FXBkcSBv13O9PBejqSPpKb3WBsIUlkGo4SIoLE4La12DV44jTi25fWL2TQSz%2BEeXAJ%2BdhvRpMADVgfUit8veKpyzPDbkrxxHWU5lBPULQjdptdVQ6cRB93DtqMf9gV39V9k1NlBpzAaoQno0QH775gA25Gbq9SlNNSg%2BWO6tQX0GK8Yfpn6611d4259bIs3zn1OFIdFEkxSh28gg48Lym%2FVXkeJnia6NMnoCFrklVKTVqaseUtS2YVkSmtOkjEnd5Vr%2F1qWMHlijXN2uEQ2H2o%2FUyYyHzG7PDNsLTghHTmIW1tdlE2BmsJ4xwd6mo1RS4EzAra%2FOmctYboUVJn1Bo0Eecw6TZHpbmeDFxowl5%2FnyQY6sgGazrCd18rE%2Fh%2Bx1s11aIyrc6jA01eLHk8Iq%2FiD0KYi0BovSTeS4%2BwRLxmPj0VBtyIMAtwRqoclEPoIX%2BvIW04T3pSt9ZqptTLvJI5nspjZqv682xSTWFa26%2FpXjYLFlTmvRS20l0db73Sezz891obyd8wP%2FqdPBn3NdiehOtE3VyBqL1fjENkFt6W8HoxLvPN8S5HgZ0e6gy441ZUKA118%2BdjGOlG5J03v4QoyA%2BVzBPAb&X-Amz-Signature=12a9e27701d9fa04f0c3c63316fb704a92bb1aed5ec2227f411827706f4db0ac&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
![Bifurcation diagram (a)and variation function of max. Lyapunov exponent (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
15
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.5em}\omega =15\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_019.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKDJE4NBHX%2F20251210%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251210T203100Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBQaDGV1LWNlbnRyYWwtMSJGMEQCIGJJtEw7IHnJZd%2BJN%2BEiJFng39M9MwgBkQJ9sT99wdvSAiBgrpncnDO69WPK4lmpSzlZel3wLE5f%2BH65wvbfgSlRbSrFBQjd%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAIaDDk2MzEzNDI4OTk0MCIMlPVmMkMeiEixSYmhKpkF%2BSuxH4uOpgMka0RPipveu12pNiQSsUfFCLq%2F%2BSHWSgrl3bAPsC1ttyJwhYeTKtGDZSAFWJDCq10mkKAcYsugbQT2TvIE34ns8fPw8jHhEy9om9Zex%2B61ilC16Uj7fABLtsrvGQdnFasLNo%2FRXBqzynSOiNZbGwdGnHpcASCbr6Ks%2F2U4fOMeOjrlSYjdsMCMrMuKDF%2FpWPdNyAFKIJPfoBc9DMVugmIkV2v4kL7OCNwLJifDcS2Wo%2BxWVTNEgmeQZ3jvI3VZcYe607TMgoHRHiKuSGAkswqRjAH2fHjrMlAPeRyk1zfs8s6K2W8jOH7chSa6EMyWscTc4xjs3%2BVoa8KU0tRrNKZ5rPoOWUeFrESxmdNViyCX8V8GGkzDS2VAIFM9p5Qn6IBhOWV6S4CqpE9vHc1Sd9yUmQYp4%2BOh8cv3R%2BJQHp4IJZdNlj%2FzpgpPUehp4230hqpQg8ShQXkTM3%2BqbCLaJwdaN0naDvMuTFFbrxtYmddU9Ip5xGDhyp366WXS2O%2Bh3TM6UVdgY%2FXBkcSBv13O9PBejqSPpKb3WBsIUlkGo4SIoLE4La12DV44jTi25fWL2TQSz%2BEeXAJ%2BdhvRpMADVgfUit8veKpyzPDbkrxxHWU5lBPULQjdptdVQ6cRB93DtqMf9gV39V9k1NlBpzAaoQno0QH775gA25Gbq9SlNNSg%2BWO6tQX0GK8Yfpn6611d4259bIs3zn1OFIdFEkxSh28gg48Lym%2FVXkeJnia6NMnoCFrklVKTVqaseUtS2YVkSmtOkjEnd5Vr%2F1qWMHlijXN2uEQ2H2o%2FUyYyHzG7PDNsLTghHTmIW1tdlE2BmsJ4xwd6mo1RS4EzAra%2FOmctYboUVJn1Bo0Eecw6TZHpbmeDFxowl5%2FnyQY6sgGazrCd18rE%2Fh%2Bx1s11aIyrc6jA01eLHk8Iq%2FiD0KYi0BovSTeS4%2BwRLxmPj0VBtyIMAtwRqoclEPoIX%2BvIW04T3pSt9ZqptTLvJI5nspjZqv682xSTWFa26%2FpXjYLFlTmvRS20l0db73Sezz891obyd8wP%2FqdPBn3NdiehOtE3VyBqL1fjENkFt6W8HoxLvPN8S5HgZ0e6gy441ZUKA118%2BdjGOlG5J03v4QoyA%2BVzBPAb&X-Amz-Signature=5616152b5cc8b269717fbe41b20263d77244f6b95bb91435f3fd74e739c7d88f&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
![Selected resolution levels j of multiwavelet signal analysis coefficients in pre-critical state P = 25 N (a) and in post-critical state P = 30 N (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
10
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.25em}\omega =10\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_020.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKDJE4NBHX%2F20251210%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251210T203100Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBQaDGV1LWNlbnRyYWwtMSJGMEQCIGJJtEw7IHnJZd%2BJN%2BEiJFng39M9MwgBkQJ9sT99wdvSAiBgrpncnDO69WPK4lmpSzlZel3wLE5f%2BH65wvbfgSlRbSrFBQjd%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAIaDDk2MzEzNDI4OTk0MCIMlPVmMkMeiEixSYmhKpkF%2BSuxH4uOpgMka0RPipveu12pNiQSsUfFCLq%2F%2BSHWSgrl3bAPsC1ttyJwhYeTKtGDZSAFWJDCq10mkKAcYsugbQT2TvIE34ns8fPw8jHhEy9om9Zex%2B61ilC16Uj7fABLtsrvGQdnFasLNo%2FRXBqzynSOiNZbGwdGnHpcASCbr6Ks%2F2U4fOMeOjrlSYjdsMCMrMuKDF%2FpWPdNyAFKIJPfoBc9DMVugmIkV2v4kL7OCNwLJifDcS2Wo%2BxWVTNEgmeQZ3jvI3VZcYe607TMgoHRHiKuSGAkswqRjAH2fHjrMlAPeRyk1zfs8s6K2W8jOH7chSa6EMyWscTc4xjs3%2BVoa8KU0tRrNKZ5rPoOWUeFrESxmdNViyCX8V8GGkzDS2VAIFM9p5Qn6IBhOWV6S4CqpE9vHc1Sd9yUmQYp4%2BOh8cv3R%2BJQHp4IJZdNlj%2FzpgpPUehp4230hqpQg8ShQXkTM3%2BqbCLaJwdaN0naDvMuTFFbrxtYmddU9Ip5xGDhyp366WXS2O%2Bh3TM6UVdgY%2FXBkcSBv13O9PBejqSPpKb3WBsIUlkGo4SIoLE4La12DV44jTi25fWL2TQSz%2BEeXAJ%2BdhvRpMADVgfUit8veKpyzPDbkrxxHWU5lBPULQjdptdVQ6cRB93DtqMf9gV39V9k1NlBpzAaoQno0QH775gA25Gbq9SlNNSg%2BWO6tQX0GK8Yfpn6611d4259bIs3zn1OFIdFEkxSh28gg48Lym%2FVXkeJnia6NMnoCFrklVKTVqaseUtS2YVkSmtOkjEnd5Vr%2F1qWMHlijXN2uEQ2H2o%2FUyYyHzG7PDNsLTghHTmIW1tdlE2BmsJ4xwd6mo1RS4EzAra%2FOmctYboUVJn1Bo0Eecw6TZHpbmeDFxowl5%2FnyQY6sgGazrCd18rE%2Fh%2Bx1s11aIyrc6jA01eLHk8Iq%2FiD0KYi0BovSTeS4%2BwRLxmPj0VBtyIMAtwRqoclEPoIX%2BvIW04T3pSt9ZqptTLvJI5nspjZqv682xSTWFa26%2FpXjYLFlTmvRS20l0db73Sezz891obyd8wP%2FqdPBn3NdiehOtE3VyBqL1fjENkFt6W8HoxLvPN8S5HgZ0e6gy441ZUKA118%2BdjGOlG5J03v4QoyA%2BVzBPAb&X-Amz-Signature=be256a66e3f0ed753d5718e8469208e4730df83b22136dcf1993339c352df082&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
![Multiwavelet expansion coefficients obtained at resolution level j = 6 in pre-critical state P = 25 N (a) and in post-critical state P = 30 N (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
10
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.5em}\omega =10\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_021.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKDJE4NBHX%2F20251210%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251210T203100Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBQaDGV1LWNlbnRyYWwtMSJGMEQCIGJJtEw7IHnJZd%2BJN%2BEiJFng39M9MwgBkQJ9sT99wdvSAiBgrpncnDO69WPK4lmpSzlZel3wLE5f%2BH65wvbfgSlRbSrFBQjd%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAIaDDk2MzEzNDI4OTk0MCIMlPVmMkMeiEixSYmhKpkF%2BSuxH4uOpgMka0RPipveu12pNiQSsUfFCLq%2F%2BSHWSgrl3bAPsC1ttyJwhYeTKtGDZSAFWJDCq10mkKAcYsugbQT2TvIE34ns8fPw8jHhEy9om9Zex%2B61ilC16Uj7fABLtsrvGQdnFasLNo%2FRXBqzynSOiNZbGwdGnHpcASCbr6Ks%2F2U4fOMeOjrlSYjdsMCMrMuKDF%2FpWPdNyAFKIJPfoBc9DMVugmIkV2v4kL7OCNwLJifDcS2Wo%2BxWVTNEgmeQZ3jvI3VZcYe607TMgoHRHiKuSGAkswqRjAH2fHjrMlAPeRyk1zfs8s6K2W8jOH7chSa6EMyWscTc4xjs3%2BVoa8KU0tRrNKZ5rPoOWUeFrESxmdNViyCX8V8GGkzDS2VAIFM9p5Qn6IBhOWV6S4CqpE9vHc1Sd9yUmQYp4%2BOh8cv3R%2BJQHp4IJZdNlj%2FzpgpPUehp4230hqpQg8ShQXkTM3%2BqbCLaJwdaN0naDvMuTFFbrxtYmddU9Ip5xGDhyp366WXS2O%2Bh3TM6UVdgY%2FXBkcSBv13O9PBejqSPpKb3WBsIUlkGo4SIoLE4La12DV44jTi25fWL2TQSz%2BEeXAJ%2BdhvRpMADVgfUit8veKpyzPDbkrxxHWU5lBPULQjdptdVQ6cRB93DtqMf9gV39V9k1NlBpzAaoQno0QH775gA25Gbq9SlNNSg%2BWO6tQX0GK8Yfpn6611d4259bIs3zn1OFIdFEkxSh28gg48Lym%2FVXkeJnia6NMnoCFrklVKTVqaseUtS2YVkSmtOkjEnd5Vr%2F1qWMHlijXN2uEQ2H2o%2FUyYyHzG7PDNsLTghHTmIW1tdlE2BmsJ4xwd6mo1RS4EzAra%2FOmctYboUVJn1Bo0Eecw6TZHpbmeDFxowl5%2FnyQY6sgGazrCd18rE%2Fh%2Bx1s11aIyrc6jA01eLHk8Iq%2FiD0KYi0BovSTeS4%2BwRLxmPj0VBtyIMAtwRqoclEPoIX%2BvIW04T3pSt9ZqptTLvJI5nspjZqv682xSTWFa26%2FpXjYLFlTmvRS20l0db73Sezz891obyd8wP%2FqdPBn3NdiehOtE3VyBqL1fjENkFt6W8HoxLvPN8S5HgZ0e6gy441ZUKA118%2BdjGOlG5J03v4QoyA%2BVzBPAb&X-Amz-Signature=6cf196e75b3032b7f16a27c4d147cbf69f42d1ee797f99e23c89b780bb86aa79&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
![Multiwavelet expansion coefficients obtained at resolution level j = 6 in pre-critical state P = 40 N (a) and in post-critical state P = 55 N (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
15
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.5em}\omega =15\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_022.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKDJE4NBHX%2F20251210%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251210T203100Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBQaDGV1LWNlbnRyYWwtMSJGMEQCIGJJtEw7IHnJZd%2BJN%2BEiJFng39M9MwgBkQJ9sT99wdvSAiBgrpncnDO69WPK4lmpSzlZel3wLE5f%2BH65wvbfgSlRbSrFBQjd%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAIaDDk2MzEzNDI4OTk0MCIMlPVmMkMeiEixSYmhKpkF%2BSuxH4uOpgMka0RPipveu12pNiQSsUfFCLq%2F%2BSHWSgrl3bAPsC1ttyJwhYeTKtGDZSAFWJDCq10mkKAcYsugbQT2TvIE34ns8fPw8jHhEy9om9Zex%2B61ilC16Uj7fABLtsrvGQdnFasLNo%2FRXBqzynSOiNZbGwdGnHpcASCbr6Ks%2F2U4fOMeOjrlSYjdsMCMrMuKDF%2FpWPdNyAFKIJPfoBc9DMVugmIkV2v4kL7OCNwLJifDcS2Wo%2BxWVTNEgmeQZ3jvI3VZcYe607TMgoHRHiKuSGAkswqRjAH2fHjrMlAPeRyk1zfs8s6K2W8jOH7chSa6EMyWscTc4xjs3%2BVoa8KU0tRrNKZ5rPoOWUeFrESxmdNViyCX8V8GGkzDS2VAIFM9p5Qn6IBhOWV6S4CqpE9vHc1Sd9yUmQYp4%2BOh8cv3R%2BJQHp4IJZdNlj%2FzpgpPUehp4230hqpQg8ShQXkTM3%2BqbCLaJwdaN0naDvMuTFFbrxtYmddU9Ip5xGDhyp366WXS2O%2Bh3TM6UVdgY%2FXBkcSBv13O9PBejqSPpKb3WBsIUlkGo4SIoLE4La12DV44jTi25fWL2TQSz%2BEeXAJ%2BdhvRpMADVgfUit8veKpyzPDbkrxxHWU5lBPULQjdptdVQ6cRB93DtqMf9gV39V9k1NlBpzAaoQno0QH775gA25Gbq9SlNNSg%2BWO6tQX0GK8Yfpn6611d4259bIs3zn1OFIdFEkxSh28gg48Lym%2FVXkeJnia6NMnoCFrklVKTVqaseUtS2YVkSmtOkjEnd5Vr%2F1qWMHlijXN2uEQ2H2o%2FUyYyHzG7PDNsLTghHTmIW1tdlE2BmsJ4xwd6mo1RS4EzAra%2FOmctYboUVJn1Bo0Eecw6TZHpbmeDFxowl5%2FnyQY6sgGazrCd18rE%2Fh%2Bx1s11aIyrc6jA01eLHk8Iq%2FiD0KYi0BovSTeS4%2BwRLxmPj0VBtyIMAtwRqoclEPoIX%2BvIW04T3pSt9ZqptTLvJI5nspjZqv682xSTWFa26%2FpXjYLFlTmvRS20l0db73Sezz891obyd8wP%2FqdPBn3NdiehOtE3VyBqL1fjENkFt6W8HoxLvPN8S5HgZ0e6gy441ZUKA118%2BdjGOlG5J03v4QoyA%2BVzBPAb&X-Amz-Signature=5e663a4d56d789792a5b6e88588bacd0e48e98b02bbfb111601f7b46642bab71&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
© 2025 Kamila Jarczewska, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.