Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18
![Bifurcation diagram (a) and variation function of max. Lyapunov exponent (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
10
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.5em}\omega =10\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_018.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKFPEESX7D%2F20260201%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20260201T081221Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEP3%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaDGV1LWNlbnRyYWwtMSJGMEQCIB5m%2Bb075uLP13en3Y8G274QXNZ95t732P0zOdGuOVGwAiBAE43t56HGHnOdCi%2BQVKOOoNSglQ5nBryIiaoL37aGBCrGBQjG%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAIaDDk2MzEzNDI4OTk0MCIMe%2BjQO%2FtzopqHrGjTKpoFhLwufuEx1FgnDI9dJikf0GH9o17paaMf6GNpyOFNzF8WJyQB2aF52Q0IR%2BeZmfbNpXOax0%2FOF6q3kStL%2B2eC89rwzEu6RE3Zle%2FIf8vmNQaQMzXEY3XLnl92FDIhsP0IePh1%2B%2B8sGWrpXtfFmXcgS%2F1j5cON8hR54%2BqywJBoiEnqC7OXru%2BkdUY9U%2FHp3Z7cWGvOi81oWZx7ooiPAeTE3DL79AtSJVj%2Bz%2BIkMqmU94O3VRAft%2BvNJUSKA0QknYo2OhlgFjzf0bUtk2%2BsGzmSgINFykY9XZ7Dzx08Kck8jhHp5ZPoBNbBdHLwU5Y3dg1bUVerK9MyJdWOi3Bgmckz%2BbevuEtubAVQxiKFszxl%2Bz%2BLzbF51HOgNNt6Ppz78esy8zNCLG450pJWjfDrkNOyAOsJZeim4ARn8HINu7GrYZgtm5x%2FYesNXSK6PakNYFyeYcd%2FfLWRqcBjqCP5KyMNKYAnBNdq%2FYG%2BPLu2ndVLJeTRPggE36z0y4cQEZf7mKe39JeIodEwSO9BqLZPO07hosAkaQBfhSJVnvGXsac8VLUx6fmUEDy5s7sZ%2B5gQ16N%2B8Z7ujqDrQxetR0%2FAdUALT6%2Fc5PpEsatvuCJVdFdPdjcYUBRR3YvsQcTdfYaUIogUcTXL7I9GX3Imv%2FIbMvp0mFHfq19me9JLp168w3%2FDpwR0cDnz3MmhV0u0REp10k0HWz1Y5I2UUyUnl5e%2FQXt1wWcFBHZsGbb8nRwjwyMcj5WNO9cgFpJ%2BbvNSItJxlP9kHtDnVi5sILuFN%2FZ24hiHvcJxUkprluYQ1kHSp4kW53rRj1C%2FEk5k3%2Bxzg%2F2KSIJ3vetHl5nyEG1ZGZfcyv%2FEo4FWIj%2F1Jd610IUk%2FOsi9WG%2FeBsnLgxjKt%2F1MOG5%2B8sGOrIBjL6eKwxlLj32nGRQJRTcjcNa3vk8oK6EWSoHaVcUy2K0IAyYsCn%2BINM7CQPgDbjshrVe7c323vT529dgXJ7lUqZIegAlEE%2Bdw9Md7fHDmMwVg9duplRPbvtNoIaZAMTmgevN3mFZosgNuVLxqrUs3Ci5%2FbonwmWocuB5vMQiuuLTYnRzv7yAcgQ8YVWPVbcF3gPAnsD9Jw4ODE3VwWCSWBV5utaxxwBql5WsD8dmNNXb0g%3D%3D&X-Amz-Signature=57b37c9424911ee5aad12796caa600085489b397e51a5a58a4d566458b09db1b&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 19
![Bifurcation diagram (a)and variation function of max. Lyapunov exponent (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
15
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.5em}\omega =15\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_019.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKFPEESX7D%2F20260201%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20260201T081221Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEP3%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaDGV1LWNlbnRyYWwtMSJGMEQCIB5m%2Bb075uLP13en3Y8G274QXNZ95t732P0zOdGuOVGwAiBAE43t56HGHnOdCi%2BQVKOOoNSglQ5nBryIiaoL37aGBCrGBQjG%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAIaDDk2MzEzNDI4OTk0MCIMe%2BjQO%2FtzopqHrGjTKpoFhLwufuEx1FgnDI9dJikf0GH9o17paaMf6GNpyOFNzF8WJyQB2aF52Q0IR%2BeZmfbNpXOax0%2FOF6q3kStL%2B2eC89rwzEu6RE3Zle%2FIf8vmNQaQMzXEY3XLnl92FDIhsP0IePh1%2B%2B8sGWrpXtfFmXcgS%2F1j5cON8hR54%2BqywJBoiEnqC7OXru%2BkdUY9U%2FHp3Z7cWGvOi81oWZx7ooiPAeTE3DL79AtSJVj%2Bz%2BIkMqmU94O3VRAft%2BvNJUSKA0QknYo2OhlgFjzf0bUtk2%2BsGzmSgINFykY9XZ7Dzx08Kck8jhHp5ZPoBNbBdHLwU5Y3dg1bUVerK9MyJdWOi3Bgmckz%2BbevuEtubAVQxiKFszxl%2Bz%2BLzbF51HOgNNt6Ppz78esy8zNCLG450pJWjfDrkNOyAOsJZeim4ARn8HINu7GrYZgtm5x%2FYesNXSK6PakNYFyeYcd%2FfLWRqcBjqCP5KyMNKYAnBNdq%2FYG%2BPLu2ndVLJeTRPggE36z0y4cQEZf7mKe39JeIodEwSO9BqLZPO07hosAkaQBfhSJVnvGXsac8VLUx6fmUEDy5s7sZ%2B5gQ16N%2B8Z7ujqDrQxetR0%2FAdUALT6%2Fc5PpEsatvuCJVdFdPdjcYUBRR3YvsQcTdfYaUIogUcTXL7I9GX3Imv%2FIbMvp0mFHfq19me9JLp168w3%2FDpwR0cDnz3MmhV0u0REp10k0HWz1Y5I2UUyUnl5e%2FQXt1wWcFBHZsGbb8nRwjwyMcj5WNO9cgFpJ%2BbvNSItJxlP9kHtDnVi5sILuFN%2FZ24hiHvcJxUkprluYQ1kHSp4kW53rRj1C%2FEk5k3%2Bxzg%2F2KSIJ3vetHl5nyEG1ZGZfcyv%2FEo4FWIj%2F1Jd610IUk%2FOsi9WG%2FeBsnLgxjKt%2F1MOG5%2B8sGOrIBjL6eKwxlLj32nGRQJRTcjcNa3vk8oK6EWSoHaVcUy2K0IAyYsCn%2BINM7CQPgDbjshrVe7c323vT529dgXJ7lUqZIegAlEE%2Bdw9Md7fHDmMwVg9duplRPbvtNoIaZAMTmgevN3mFZosgNuVLxqrUs3Ci5%2FbonwmWocuB5vMQiuuLTYnRzv7yAcgQ8YVWPVbcF3gPAnsD9Jw4ODE3VwWCSWBV5utaxxwBql5WsD8dmNNXb0g%3D%3D&X-Amz-Signature=c4db30ae419e4ce6abebe8ecdaa4d4bc2e7341088f2a7635294ab404e963294a&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 20
![Selected resolution levels j of multiwavelet signal analysis coefficients in pre-critical state P = 25 N (a) and in post-critical state P = 30 N (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
10
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.25em}\omega =10\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_020.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKFPEESX7D%2F20260201%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20260201T081221Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEP3%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaDGV1LWNlbnRyYWwtMSJGMEQCIB5m%2Bb075uLP13en3Y8G274QXNZ95t732P0zOdGuOVGwAiBAE43t56HGHnOdCi%2BQVKOOoNSglQ5nBryIiaoL37aGBCrGBQjG%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAIaDDk2MzEzNDI4OTk0MCIMe%2BjQO%2FtzopqHrGjTKpoFhLwufuEx1FgnDI9dJikf0GH9o17paaMf6GNpyOFNzF8WJyQB2aF52Q0IR%2BeZmfbNpXOax0%2FOF6q3kStL%2B2eC89rwzEu6RE3Zle%2FIf8vmNQaQMzXEY3XLnl92FDIhsP0IePh1%2B%2B8sGWrpXtfFmXcgS%2F1j5cON8hR54%2BqywJBoiEnqC7OXru%2BkdUY9U%2FHp3Z7cWGvOi81oWZx7ooiPAeTE3DL79AtSJVj%2Bz%2BIkMqmU94O3VRAft%2BvNJUSKA0QknYo2OhlgFjzf0bUtk2%2BsGzmSgINFykY9XZ7Dzx08Kck8jhHp5ZPoBNbBdHLwU5Y3dg1bUVerK9MyJdWOi3Bgmckz%2BbevuEtubAVQxiKFszxl%2Bz%2BLzbF51HOgNNt6Ppz78esy8zNCLG450pJWjfDrkNOyAOsJZeim4ARn8HINu7GrYZgtm5x%2FYesNXSK6PakNYFyeYcd%2FfLWRqcBjqCP5KyMNKYAnBNdq%2FYG%2BPLu2ndVLJeTRPggE36z0y4cQEZf7mKe39JeIodEwSO9BqLZPO07hosAkaQBfhSJVnvGXsac8VLUx6fmUEDy5s7sZ%2B5gQ16N%2B8Z7ujqDrQxetR0%2FAdUALT6%2Fc5PpEsatvuCJVdFdPdjcYUBRR3YvsQcTdfYaUIogUcTXL7I9GX3Imv%2FIbMvp0mFHfq19me9JLp168w3%2FDpwR0cDnz3MmhV0u0REp10k0HWz1Y5I2UUyUnl5e%2FQXt1wWcFBHZsGbb8nRwjwyMcj5WNO9cgFpJ%2BbvNSItJxlP9kHtDnVi5sILuFN%2FZ24hiHvcJxUkprluYQ1kHSp4kW53rRj1C%2FEk5k3%2Bxzg%2F2KSIJ3vetHl5nyEG1ZGZfcyv%2FEo4FWIj%2F1Jd610IUk%2FOsi9WG%2FeBsnLgxjKt%2F1MOG5%2B8sGOrIBjL6eKwxlLj32nGRQJRTcjcNa3vk8oK6EWSoHaVcUy2K0IAyYsCn%2BINM7CQPgDbjshrVe7c323vT529dgXJ7lUqZIegAlEE%2Bdw9Md7fHDmMwVg9duplRPbvtNoIaZAMTmgevN3mFZosgNuVLxqrUs3Ci5%2FbonwmWocuB5vMQiuuLTYnRzv7yAcgQ8YVWPVbcF3gPAnsD9Jw4ODE3VwWCSWBV5utaxxwBql5WsD8dmNNXb0g%3D%3D&X-Amz-Signature=8cb0f1db14faf1134d7df11a8156b2a22b66df90ac200dd031a3189a83002060&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 21
![Multiwavelet expansion coefficients obtained at resolution level j = 6 in pre-critical state P = 25 N (a) and in post-critical state P = 30 N (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
10
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.5em}\omega =10\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_021.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKFPEESX7D%2F20260201%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20260201T081221Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEP3%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaDGV1LWNlbnRyYWwtMSJGMEQCIB5m%2Bb075uLP13en3Y8G274QXNZ95t732P0zOdGuOVGwAiBAE43t56HGHnOdCi%2BQVKOOoNSglQ5nBryIiaoL37aGBCrGBQjG%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAIaDDk2MzEzNDI4OTk0MCIMe%2BjQO%2FtzopqHrGjTKpoFhLwufuEx1FgnDI9dJikf0GH9o17paaMf6GNpyOFNzF8WJyQB2aF52Q0IR%2BeZmfbNpXOax0%2FOF6q3kStL%2B2eC89rwzEu6RE3Zle%2FIf8vmNQaQMzXEY3XLnl92FDIhsP0IePh1%2B%2B8sGWrpXtfFmXcgS%2F1j5cON8hR54%2BqywJBoiEnqC7OXru%2BkdUY9U%2FHp3Z7cWGvOi81oWZx7ooiPAeTE3DL79AtSJVj%2Bz%2BIkMqmU94O3VRAft%2BvNJUSKA0QknYo2OhlgFjzf0bUtk2%2BsGzmSgINFykY9XZ7Dzx08Kck8jhHp5ZPoBNbBdHLwU5Y3dg1bUVerK9MyJdWOi3Bgmckz%2BbevuEtubAVQxiKFszxl%2Bz%2BLzbF51HOgNNt6Ppz78esy8zNCLG450pJWjfDrkNOyAOsJZeim4ARn8HINu7GrYZgtm5x%2FYesNXSK6PakNYFyeYcd%2FfLWRqcBjqCP5KyMNKYAnBNdq%2FYG%2BPLu2ndVLJeTRPggE36z0y4cQEZf7mKe39JeIodEwSO9BqLZPO07hosAkaQBfhSJVnvGXsac8VLUx6fmUEDy5s7sZ%2B5gQ16N%2B8Z7ujqDrQxetR0%2FAdUALT6%2Fc5PpEsatvuCJVdFdPdjcYUBRR3YvsQcTdfYaUIogUcTXL7I9GX3Imv%2FIbMvp0mFHfq19me9JLp168w3%2FDpwR0cDnz3MmhV0u0REp10k0HWz1Y5I2UUyUnl5e%2FQXt1wWcFBHZsGbb8nRwjwyMcj5WNO9cgFpJ%2BbvNSItJxlP9kHtDnVi5sILuFN%2FZ24hiHvcJxUkprluYQ1kHSp4kW53rRj1C%2FEk5k3%2Bxzg%2F2KSIJ3vetHl5nyEG1ZGZfcyv%2FEo4FWIj%2F1Jd610IUk%2FOsi9WG%2FeBsnLgxjKt%2F1MOG5%2B8sGOrIBjL6eKwxlLj32nGRQJRTcjcNa3vk8oK6EWSoHaVcUy2K0IAyYsCn%2BINM7CQPgDbjshrVe7c323vT529dgXJ7lUqZIegAlEE%2Bdw9Md7fHDmMwVg9duplRPbvtNoIaZAMTmgevN3mFZosgNuVLxqrUs3Ci5%2FbonwmWocuB5vMQiuuLTYnRzv7yAcgQ8YVWPVbcF3gPAnsD9Jw4ODE3VwWCSWBV5utaxxwBql5WsD8dmNNXb0g%3D%3D&X-Amz-Signature=38504f8cd6427d055149d20058fd5af80762278290ca983d04b17564d21792c3&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 22
![Multiwavelet expansion coefficients obtained at resolution level j = 6 in pre-critical state P = 40 N (a) and in post-critical state P = 55 N (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
15
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.5em}\omega =15\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_022.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKFPEESX7D%2F20260201%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20260201T081221Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEP3%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaDGV1LWNlbnRyYWwtMSJGMEQCIB5m%2Bb075uLP13en3Y8G274QXNZ95t732P0zOdGuOVGwAiBAE43t56HGHnOdCi%2BQVKOOoNSglQ5nBryIiaoL37aGBCrGBQjG%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAIaDDk2MzEzNDI4OTk0MCIMe%2BjQO%2FtzopqHrGjTKpoFhLwufuEx1FgnDI9dJikf0GH9o17paaMf6GNpyOFNzF8WJyQB2aF52Q0IR%2BeZmfbNpXOax0%2FOF6q3kStL%2B2eC89rwzEu6RE3Zle%2FIf8vmNQaQMzXEY3XLnl92FDIhsP0IePh1%2B%2B8sGWrpXtfFmXcgS%2F1j5cON8hR54%2BqywJBoiEnqC7OXru%2BkdUY9U%2FHp3Z7cWGvOi81oWZx7ooiPAeTE3DL79AtSJVj%2Bz%2BIkMqmU94O3VRAft%2BvNJUSKA0QknYo2OhlgFjzf0bUtk2%2BsGzmSgINFykY9XZ7Dzx08Kck8jhHp5ZPoBNbBdHLwU5Y3dg1bUVerK9MyJdWOi3Bgmckz%2BbevuEtubAVQxiKFszxl%2Bz%2BLzbF51HOgNNt6Ppz78esy8zNCLG450pJWjfDrkNOyAOsJZeim4ARn8HINu7GrYZgtm5x%2FYesNXSK6PakNYFyeYcd%2FfLWRqcBjqCP5KyMNKYAnBNdq%2FYG%2BPLu2ndVLJeTRPggE36z0y4cQEZf7mKe39JeIodEwSO9BqLZPO07hosAkaQBfhSJVnvGXsac8VLUx6fmUEDy5s7sZ%2B5gQ16N%2B8Z7ujqDrQxetR0%2FAdUALT6%2Fc5PpEsatvuCJVdFdPdjcYUBRR3YvsQcTdfYaUIogUcTXL7I9GX3Imv%2FIbMvp0mFHfq19me9JLp168w3%2FDpwR0cDnz3MmhV0u0REp10k0HWz1Y5I2UUyUnl5e%2FQXt1wWcFBHZsGbb8nRwjwyMcj5WNO9cgFpJ%2BbvNSItJxlP9kHtDnVi5sILuFN%2FZ24hiHvcJxUkprluYQ1kHSp4kW53rRj1C%2FEk5k3%2Bxzg%2F2KSIJ3vetHl5nyEG1ZGZfcyv%2FEo4FWIj%2F1Jd610IUk%2FOsi9WG%2FeBsnLgxjKt%2F1MOG5%2B8sGOrIBjL6eKwxlLj32nGRQJRTcjcNa3vk8oK6EWSoHaVcUy2K0IAyYsCn%2BINM7CQPgDbjshrVe7c323vT529dgXJ7lUqZIegAlEE%2Bdw9Md7fHDmMwVg9duplRPbvtNoIaZAMTmgevN3mFZosgNuVLxqrUs3Ci5%2FbonwmWocuB5vMQiuuLTYnRzv7yAcgQ8YVWPVbcF3gPAnsD9Jw4ODE3VwWCSWBV5utaxxwBql5WsD8dmNNXb0g%3D%3D&X-Amz-Signature=02dd72d93473d0b59b4a9bd2f941f1cbe59922a1b9f5007169a47828db12521d&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)

















![Bifurcation diagram (a) and variation function of max. Lyapunov exponent (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
10
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.5em}\omega =10\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_018.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKFPEESX7D%2F20260201%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20260201T081221Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEP3%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaDGV1LWNlbnRyYWwtMSJGMEQCIB5m%2Bb075uLP13en3Y8G274QXNZ95t732P0zOdGuOVGwAiBAE43t56HGHnOdCi%2BQVKOOoNSglQ5nBryIiaoL37aGBCrGBQjG%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAIaDDk2MzEzNDI4OTk0MCIMe%2BjQO%2FtzopqHrGjTKpoFhLwufuEx1FgnDI9dJikf0GH9o17paaMf6GNpyOFNzF8WJyQB2aF52Q0IR%2BeZmfbNpXOax0%2FOF6q3kStL%2B2eC89rwzEu6RE3Zle%2FIf8vmNQaQMzXEY3XLnl92FDIhsP0IePh1%2B%2B8sGWrpXtfFmXcgS%2F1j5cON8hR54%2BqywJBoiEnqC7OXru%2BkdUY9U%2FHp3Z7cWGvOi81oWZx7ooiPAeTE3DL79AtSJVj%2Bz%2BIkMqmU94O3VRAft%2BvNJUSKA0QknYo2OhlgFjzf0bUtk2%2BsGzmSgINFykY9XZ7Dzx08Kck8jhHp5ZPoBNbBdHLwU5Y3dg1bUVerK9MyJdWOi3Bgmckz%2BbevuEtubAVQxiKFszxl%2Bz%2BLzbF51HOgNNt6Ppz78esy8zNCLG450pJWjfDrkNOyAOsJZeim4ARn8HINu7GrYZgtm5x%2FYesNXSK6PakNYFyeYcd%2FfLWRqcBjqCP5KyMNKYAnBNdq%2FYG%2BPLu2ndVLJeTRPggE36z0y4cQEZf7mKe39JeIodEwSO9BqLZPO07hosAkaQBfhSJVnvGXsac8VLUx6fmUEDy5s7sZ%2B5gQ16N%2B8Z7ujqDrQxetR0%2FAdUALT6%2Fc5PpEsatvuCJVdFdPdjcYUBRR3YvsQcTdfYaUIogUcTXL7I9GX3Imv%2FIbMvp0mFHfq19me9JLp168w3%2FDpwR0cDnz3MmhV0u0REp10k0HWz1Y5I2UUyUnl5e%2FQXt1wWcFBHZsGbb8nRwjwyMcj5WNO9cgFpJ%2BbvNSItJxlP9kHtDnVi5sILuFN%2FZ24hiHvcJxUkprluYQ1kHSp4kW53rRj1C%2FEk5k3%2Bxzg%2F2KSIJ3vetHl5nyEG1ZGZfcyv%2FEo4FWIj%2F1Jd610IUk%2FOsi9WG%2FeBsnLgxjKt%2F1MOG5%2B8sGOrIBjL6eKwxlLj32nGRQJRTcjcNa3vk8oK6EWSoHaVcUy2K0IAyYsCn%2BINM7CQPgDbjshrVe7c323vT529dgXJ7lUqZIegAlEE%2Bdw9Md7fHDmMwVg9duplRPbvtNoIaZAMTmgevN3mFZosgNuVLxqrUs3Ci5%2FbonwmWocuB5vMQiuuLTYnRzv7yAcgQ8YVWPVbcF3gPAnsD9Jw4ODE3VwWCSWBV5utaxxwBql5WsD8dmNNXb0g%3D%3D&X-Amz-Signature=57b37c9424911ee5aad12796caa600085489b397e51a5a58a4d566458b09db1b&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
![Bifurcation diagram (a)and variation function of max. Lyapunov exponent (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
15
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.5em}\omega =15\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_019.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKFPEESX7D%2F20260201%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20260201T081221Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEP3%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaDGV1LWNlbnRyYWwtMSJGMEQCIB5m%2Bb075uLP13en3Y8G274QXNZ95t732P0zOdGuOVGwAiBAE43t56HGHnOdCi%2BQVKOOoNSglQ5nBryIiaoL37aGBCrGBQjG%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAIaDDk2MzEzNDI4OTk0MCIMe%2BjQO%2FtzopqHrGjTKpoFhLwufuEx1FgnDI9dJikf0GH9o17paaMf6GNpyOFNzF8WJyQB2aF52Q0IR%2BeZmfbNpXOax0%2FOF6q3kStL%2B2eC89rwzEu6RE3Zle%2FIf8vmNQaQMzXEY3XLnl92FDIhsP0IePh1%2B%2B8sGWrpXtfFmXcgS%2F1j5cON8hR54%2BqywJBoiEnqC7OXru%2BkdUY9U%2FHp3Z7cWGvOi81oWZx7ooiPAeTE3DL79AtSJVj%2Bz%2BIkMqmU94O3VRAft%2BvNJUSKA0QknYo2OhlgFjzf0bUtk2%2BsGzmSgINFykY9XZ7Dzx08Kck8jhHp5ZPoBNbBdHLwU5Y3dg1bUVerK9MyJdWOi3Bgmckz%2BbevuEtubAVQxiKFszxl%2Bz%2BLzbF51HOgNNt6Ppz78esy8zNCLG450pJWjfDrkNOyAOsJZeim4ARn8HINu7GrYZgtm5x%2FYesNXSK6PakNYFyeYcd%2FfLWRqcBjqCP5KyMNKYAnBNdq%2FYG%2BPLu2ndVLJeTRPggE36z0y4cQEZf7mKe39JeIodEwSO9BqLZPO07hosAkaQBfhSJVnvGXsac8VLUx6fmUEDy5s7sZ%2B5gQ16N%2B8Z7ujqDrQxetR0%2FAdUALT6%2Fc5PpEsatvuCJVdFdPdjcYUBRR3YvsQcTdfYaUIogUcTXL7I9GX3Imv%2FIbMvp0mFHfq19me9JLp168w3%2FDpwR0cDnz3MmhV0u0REp10k0HWz1Y5I2UUyUnl5e%2FQXt1wWcFBHZsGbb8nRwjwyMcj5WNO9cgFpJ%2BbvNSItJxlP9kHtDnVi5sILuFN%2FZ24hiHvcJxUkprluYQ1kHSp4kW53rRj1C%2FEk5k3%2Bxzg%2F2KSIJ3vetHl5nyEG1ZGZfcyv%2FEo4FWIj%2F1Jd610IUk%2FOsi9WG%2FeBsnLgxjKt%2F1MOG5%2B8sGOrIBjL6eKwxlLj32nGRQJRTcjcNa3vk8oK6EWSoHaVcUy2K0IAyYsCn%2BINM7CQPgDbjshrVe7c323vT529dgXJ7lUqZIegAlEE%2Bdw9Md7fHDmMwVg9duplRPbvtNoIaZAMTmgevN3mFZosgNuVLxqrUs3Ci5%2FbonwmWocuB5vMQiuuLTYnRzv7yAcgQ8YVWPVbcF3gPAnsD9Jw4ODE3VwWCSWBV5utaxxwBql5WsD8dmNNXb0g%3D%3D&X-Amz-Signature=c4db30ae419e4ce6abebe8ecdaa4d4bc2e7341088f2a7635294ab404e963294a&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
![Selected resolution levels j of multiwavelet signal analysis coefficients in pre-critical state P = 25 N (a) and in post-critical state P = 30 N (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
10
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.25em}\omega =10\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_020.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKFPEESX7D%2F20260201%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20260201T081221Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEP3%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaDGV1LWNlbnRyYWwtMSJGMEQCIB5m%2Bb075uLP13en3Y8G274QXNZ95t732P0zOdGuOVGwAiBAE43t56HGHnOdCi%2BQVKOOoNSglQ5nBryIiaoL37aGBCrGBQjG%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAIaDDk2MzEzNDI4OTk0MCIMe%2BjQO%2FtzopqHrGjTKpoFhLwufuEx1FgnDI9dJikf0GH9o17paaMf6GNpyOFNzF8WJyQB2aF52Q0IR%2BeZmfbNpXOax0%2FOF6q3kStL%2B2eC89rwzEu6RE3Zle%2FIf8vmNQaQMzXEY3XLnl92FDIhsP0IePh1%2B%2B8sGWrpXtfFmXcgS%2F1j5cON8hR54%2BqywJBoiEnqC7OXru%2BkdUY9U%2FHp3Z7cWGvOi81oWZx7ooiPAeTE3DL79AtSJVj%2Bz%2BIkMqmU94O3VRAft%2BvNJUSKA0QknYo2OhlgFjzf0bUtk2%2BsGzmSgINFykY9XZ7Dzx08Kck8jhHp5ZPoBNbBdHLwU5Y3dg1bUVerK9MyJdWOi3Bgmckz%2BbevuEtubAVQxiKFszxl%2Bz%2BLzbF51HOgNNt6Ppz78esy8zNCLG450pJWjfDrkNOyAOsJZeim4ARn8HINu7GrYZgtm5x%2FYesNXSK6PakNYFyeYcd%2FfLWRqcBjqCP5KyMNKYAnBNdq%2FYG%2BPLu2ndVLJeTRPggE36z0y4cQEZf7mKe39JeIodEwSO9BqLZPO07hosAkaQBfhSJVnvGXsac8VLUx6fmUEDy5s7sZ%2B5gQ16N%2B8Z7ujqDrQxetR0%2FAdUALT6%2Fc5PpEsatvuCJVdFdPdjcYUBRR3YvsQcTdfYaUIogUcTXL7I9GX3Imv%2FIbMvp0mFHfq19me9JLp168w3%2FDpwR0cDnz3MmhV0u0REp10k0HWz1Y5I2UUyUnl5e%2FQXt1wWcFBHZsGbb8nRwjwyMcj5WNO9cgFpJ%2BbvNSItJxlP9kHtDnVi5sILuFN%2FZ24hiHvcJxUkprluYQ1kHSp4kW53rRj1C%2FEk5k3%2Bxzg%2F2KSIJ3vetHl5nyEG1ZGZfcyv%2FEo4FWIj%2F1Jd610IUk%2FOsi9WG%2FeBsnLgxjKt%2F1MOG5%2B8sGOrIBjL6eKwxlLj32nGRQJRTcjcNa3vk8oK6EWSoHaVcUy2K0IAyYsCn%2BINM7CQPgDbjshrVe7c323vT529dgXJ7lUqZIegAlEE%2Bdw9Md7fHDmMwVg9duplRPbvtNoIaZAMTmgevN3mFZosgNuVLxqrUs3Ci5%2FbonwmWocuB5vMQiuuLTYnRzv7yAcgQ8YVWPVbcF3gPAnsD9Jw4ODE3VwWCSWBV5utaxxwBql5WsD8dmNNXb0g%3D%3D&X-Amz-Signature=8cb0f1db14faf1134d7df11a8156b2a22b66df90ac200dd031a3189a83002060&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
![Multiwavelet expansion coefficients obtained at resolution level j = 6 in pre-critical state P = 25 N (a) and in post-critical state P = 30 N (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
10
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.5em}\omega =10\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_021.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKFPEESX7D%2F20260201%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20260201T081221Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEP3%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaDGV1LWNlbnRyYWwtMSJGMEQCIB5m%2Bb075uLP13en3Y8G274QXNZ95t732P0zOdGuOVGwAiBAE43t56HGHnOdCi%2BQVKOOoNSglQ5nBryIiaoL37aGBCrGBQjG%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAIaDDk2MzEzNDI4OTk0MCIMe%2BjQO%2FtzopqHrGjTKpoFhLwufuEx1FgnDI9dJikf0GH9o17paaMf6GNpyOFNzF8WJyQB2aF52Q0IR%2BeZmfbNpXOax0%2FOF6q3kStL%2B2eC89rwzEu6RE3Zle%2FIf8vmNQaQMzXEY3XLnl92FDIhsP0IePh1%2B%2B8sGWrpXtfFmXcgS%2F1j5cON8hR54%2BqywJBoiEnqC7OXru%2BkdUY9U%2FHp3Z7cWGvOi81oWZx7ooiPAeTE3DL79AtSJVj%2Bz%2BIkMqmU94O3VRAft%2BvNJUSKA0QknYo2OhlgFjzf0bUtk2%2BsGzmSgINFykY9XZ7Dzx08Kck8jhHp5ZPoBNbBdHLwU5Y3dg1bUVerK9MyJdWOi3Bgmckz%2BbevuEtubAVQxiKFszxl%2Bz%2BLzbF51HOgNNt6Ppz78esy8zNCLG450pJWjfDrkNOyAOsJZeim4ARn8HINu7GrYZgtm5x%2FYesNXSK6PakNYFyeYcd%2FfLWRqcBjqCP5KyMNKYAnBNdq%2FYG%2BPLu2ndVLJeTRPggE36z0y4cQEZf7mKe39JeIodEwSO9BqLZPO07hosAkaQBfhSJVnvGXsac8VLUx6fmUEDy5s7sZ%2B5gQ16N%2B8Z7ujqDrQxetR0%2FAdUALT6%2Fc5PpEsatvuCJVdFdPdjcYUBRR3YvsQcTdfYaUIogUcTXL7I9GX3Imv%2FIbMvp0mFHfq19me9JLp168w3%2FDpwR0cDnz3MmhV0u0REp10k0HWz1Y5I2UUyUnl5e%2FQXt1wWcFBHZsGbb8nRwjwyMcj5WNO9cgFpJ%2BbvNSItJxlP9kHtDnVi5sILuFN%2FZ24hiHvcJxUkprluYQ1kHSp4kW53rRj1C%2FEk5k3%2Bxzg%2F2KSIJ3vetHl5nyEG1ZGZfcyv%2FEo4FWIj%2F1Jd610IUk%2FOsi9WG%2FeBsnLgxjKt%2F1MOG5%2B8sGOrIBjL6eKwxlLj32nGRQJRTcjcNa3vk8oK6EWSoHaVcUy2K0IAyYsCn%2BINM7CQPgDbjshrVe7c323vT529dgXJ7lUqZIegAlEE%2Bdw9Md7fHDmMwVg9duplRPbvtNoIaZAMTmgevN3mFZosgNuVLxqrUs3Ci5%2FbonwmWocuB5vMQiuuLTYnRzv7yAcgQ8YVWPVbcF3gPAnsD9Jw4ODE3VwWCSWBV5utaxxwBql5WsD8dmNNXb0g%3D%3D&X-Amz-Signature=38504f8cd6427d055149d20058fd5af80762278290ca983d04b17564d21792c3&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
![Multiwavelet expansion coefficients obtained at resolution level j = 6 in pre-critical state P = 40 N (a) and in post-critical state P = 55 N (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
15
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.5em}\omega =15\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_022.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKFPEESX7D%2F20260201%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20260201T081221Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEP3%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaDGV1LWNlbnRyYWwtMSJGMEQCIB5m%2Bb075uLP13en3Y8G274QXNZ95t732P0zOdGuOVGwAiBAE43t56HGHnOdCi%2BQVKOOoNSglQ5nBryIiaoL37aGBCrGBQjG%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAIaDDk2MzEzNDI4OTk0MCIMe%2BjQO%2FtzopqHrGjTKpoFhLwufuEx1FgnDI9dJikf0GH9o17paaMf6GNpyOFNzF8WJyQB2aF52Q0IR%2BeZmfbNpXOax0%2FOF6q3kStL%2B2eC89rwzEu6RE3Zle%2FIf8vmNQaQMzXEY3XLnl92FDIhsP0IePh1%2B%2B8sGWrpXtfFmXcgS%2F1j5cON8hR54%2BqywJBoiEnqC7OXru%2BkdUY9U%2FHp3Z7cWGvOi81oWZx7ooiPAeTE3DL79AtSJVj%2Bz%2BIkMqmU94O3VRAft%2BvNJUSKA0QknYo2OhlgFjzf0bUtk2%2BsGzmSgINFykY9XZ7Dzx08Kck8jhHp5ZPoBNbBdHLwU5Y3dg1bUVerK9MyJdWOi3Bgmckz%2BbevuEtubAVQxiKFszxl%2Bz%2BLzbF51HOgNNt6Ppz78esy8zNCLG450pJWjfDrkNOyAOsJZeim4ARn8HINu7GrYZgtm5x%2FYesNXSK6PakNYFyeYcd%2FfLWRqcBjqCP5KyMNKYAnBNdq%2FYG%2BPLu2ndVLJeTRPggE36z0y4cQEZf7mKe39JeIodEwSO9BqLZPO07hosAkaQBfhSJVnvGXsac8VLUx6fmUEDy5s7sZ%2B5gQ16N%2B8Z7ujqDrQxetR0%2FAdUALT6%2Fc5PpEsatvuCJVdFdPdjcYUBRR3YvsQcTdfYaUIogUcTXL7I9GX3Imv%2FIbMvp0mFHfq19me9JLp168w3%2FDpwR0cDnz3MmhV0u0REp10k0HWz1Y5I2UUyUnl5e%2FQXt1wWcFBHZsGbb8nRwjwyMcj5WNO9cgFpJ%2BbvNSItJxlP9kHtDnVi5sILuFN%2FZ24hiHvcJxUkprluYQ1kHSp4kW53rRj1C%2FEk5k3%2Bxzg%2F2KSIJ3vetHl5nyEG1ZGZfcyv%2FEo4FWIj%2F1Jd610IUk%2FOsi9WG%2FeBsnLgxjKt%2F1MOG5%2B8sGOrIBjL6eKwxlLj32nGRQJRTcjcNa3vk8oK6EWSoHaVcUy2K0IAyYsCn%2BINM7CQPgDbjshrVe7c323vT529dgXJ7lUqZIegAlEE%2Bdw9Md7fHDmMwVg9duplRPbvtNoIaZAMTmgevN3mFZosgNuVLxqrUs3Ci5%2FbonwmWocuB5vMQiuuLTYnRzv7yAcgQ8YVWPVbcF3gPAnsD9Jw4ODE3VwWCSWBV5utaxxwBql5WsD8dmNNXb0g%3D%3D&X-Amz-Signature=02dd72d93473d0b59b4a9bd2f941f1cbe59922a1b9f5007169a47828db12521d&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
© 2025 Kamila Jarczewska, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.