Have a personal or library account? Click to login
Application of second-order sensitivity analysis to stabilisation of unstable continuous multi-degree-of-freedom parametric periodic systems Cover

Application of second-order sensitivity analysis to stabilisation of unstable continuous multi-degree-of-freedom parametric periodic systems

Open Access
|Sep 2025

References

  1. Demidowicz B.P., 1972 Mathematical theory of stability, WNT, Warszawa (in Polish).
  2. Skalmierski B., 1971 Theoretical mechanics, Wydawnictwo Uniwersytetu Śląskiego, Katowice (in Polish).
  3. La Salle J., Lefschetz, 1966 Overview of Lyapunov’s stability theory and its direct method, BNI PWN, Warszawa (in Polish).
  4. Leipholz H.H., 1987 Stability theory. An introduction to the stability of dynamic systems and rigid bodies. Stuttgart, John Wiley & Sons, (second edition).
  5. Yakubovitch V.A., Starzhinski V.M., 1987 Paramietričeski rezonas w liniejnych sistiemach, Moskwa, Nauka (in Russia).
  6. Bolotin W.W., 1956 Dynamic stability of elastic systems, GITTL, Moskwa (in Russian).
  7. Pipes L.A., 1953 Matrix solution of equations of Mathieu-Hill type, Journal of Applied Physics 24, 902–910.
  8. Evan-IVANOWSKI R.M., 1965 On the parametric response of structures, Applied Mechanics Reviews 18, 9, 699–702.
  9. Hsu C.S., 1963 On the parametric excitation of a dynamic system having multiple degrees of freedom, Transaction of the ASME 85, s. E, Journal of Applied. Mechanics 30, 367–372.
  10. Hsu C.S., 1965 Further results on parametric excitation of a dynamic system, Transaction of the ASME, Journal of Applied Mechanics, 32, 373–377.
  11. Hsu C.S., 1972 Impulsive parametric excitation: theory. Transaction of the ASME 96, Journal of Applied Mechanics, 39, 551–558.
  12. Hsu C.S. and Cheng W.H., 1974 Steady-state response of a dynamical system under combined parametric and forcing excitation, Transaction of the ASME 98, Journal. of Applied Mechanics, 41, 6, 371–378.
  13. Benedetti G.A., 1974 Dynamic stability of a beam loaded by a sequence of moving mass particles, Journal of Applied Mechanics 41, 1069–1071.
  14. McWhannell D.C., 1976 Parametric instability regions in multi-degree of freedom systems under quasi-periodic beating input excitation, Journal of Sound and Vibration 48, 1, 73–81.
  15. Paidoussis M.P., Sundararajan C., 1975 Parametric and combination resonance of a pipe converting pulsating fluid, Transaction of the ASME, Journal of Applied Mechanics 42, 780–784.
  16. Ibrahim R.A., Barr A.D., 1978 Parametric Vibrations Part I: Mechanics of Linear Problems, Shock and Vibration Digest 10, 1, 15–29.
  17. Kamiński E., Osiński J., 1981 Parametric vibration of a model of one-stage gear transmission taking into account damping and constant load, Archiwum Budowy Maszyn 1, 221–246.
  18. Osiński J., 1991 Analysis of parametric vibration of continuous systems under constant transversal loading using asymptotic method and finite elements method, Journal of Teoretical and Applied Mechanics 32, 2, 241–254.
  19. Tondl A., 1991 Quenching of self-excited vibrations, Elsevier, Amsterdam.
  20. TONDL A., 1992 A contribution to the analysis of autoparametric systems, Acta Tech. Cesk. Akad. Ved, 37, 735–758.
  21. Tondl A., Nabergoj R., 1993 Autoparametric systems, Rep. 16, University of Trieste, Department of Naval Architecture, Ocean and Environmental Engineering, Trieste, Italy.
  22. Tondl A., Ruijgrik T., Vershulst F. I, Nabergoj R., 2000 Autoparametric resonance in mechanica systems, Cambridge University Press, Cambridge.
  23. Tylikowski A., 1993 Stabilization of beam parametric vibrations, J. Theoretical and Applied Mechanics 31, 3, 657–670.
  24. Yang S.M., Tsao S.M., 1997 Dynamics of a pretwisted blade under nonconstant rotating speed, Computer and Structures 62, 4, 643–651.
  25. Osiński Z., 1980 Vibration theory, PWN, Warszawa (in Polish).
  26. Osiński Z., 1997 Vibration damping, PWN, Warszawa (in Polish).
  27. Frank P.M., 1978 Introduction to System Sensitivity Theory, Acad. Press.
  28. Haug E.J., Choi K.K, Komkov V., 1986 Design sensitivity analysis of structural systems, Acad. Press.
  29. Rudisill C.S., Bhatia K.G., 1972 Second derivatives of the flutter velocity and the optimization of airecraft structures, AAIA Journal 10, 12, 1569–1572.
  30. Watari A., Iwamoto S., 1974 Application of sensitivity analysis to vehicle dynamics, Vehicle System Dynamics 3, 1–16.
  31. Ray D., Pister K.S., Polak E., 1978 Sensitivity analysis for hysteretic dynamic systems: theory and applications, Computer Methods in Applied Mechanics and Engineering 14, 179–208.
  32. Arora J.S., Haug E.J., 1979 Method of design sensitivity analysis in structural optimization, AIAA Journal 17, 9, 970–974.
  33. Haug E.J., Rousselet B., 1980 Design sensitivity analysis in structural mechanics. I. Static response variations, Journal of Structural Mechechanics 8, 1, 17–41.
  34. Haug E.J., Ehle P.E., 1982 Second-order design sensitivity analysis of mechanical system dynamics, Internationa Journal for Numumerical Methods in Engineering 18, 1699–1717.
  35. Van Belle H., 1982 High order sensitivities in structural systems, AIAA Journal 20, 2, 286–288.
  36. Dems K., Mróz Z., 1983 Variational approach by means of adjoint systems to structural optimization and sensitivity analysis-I. Variation of material parameters within fixed domain, International Journal of Solid Structures 19, 8, 677–692.
  37. Dems K., Mróz Z., 1984 Variational approach by means of adjoint systems to structural optimization and sensitivity analysis-II. Structure shape variation, International Journal of Solid Structures 20, 6, 527–552.
  38. Hsieh C.C., Arora J.S., 1984 Design sensitivity analysis and optimization of dynamic response, Computer Methods in Applied Mechanics and Engineering 43, 195–219.
  39. Hsieh C.C., Arora J.S., 1984 Structural design sensitivity analysis with general boundary conditions: static problem, Internationa Journal for Numumerical Methods in Engineering 20, 1161–1670.
  40. Adelman H.M., HAftka R.T., 1986 Sensitivity analysis of discrete structural systems, AIAA Journal 24, 5, 823–832.
  41. Wicher J., 1987 First and second order sensitivity derivatives of mechanical systems transfer matrix, Rozprawy Inżynierskie 35, 2, 229–240.
  42. Wicher J., Nałęcz A., 1987 Second order sensitivity analysis of lumped mechanical sysytems in the frequency domain, Internationa Journal for Numumerical Methods in Engineering 24, 2357–2366.
  43. Nałęcz A.G., Wicher J., 1988 Design sensitivity analysis of mechanical systems in frequency domain, Journal of Sound and Vibration 120, 3, 517–526.
  44. Chen L.-W., Ku D.-M., 1992 Eigenvalue sensitivity in the stability analysis of Beck’s column with a concentrated mass at the free end, Journal of Sound and Vibrations 153, 3, 403–411.
  45. Godoy L.A., 1996 Sensitivity of post-critical states to changes in design parameters, International Journal of Solid Structures 33, 15, 2177–2192.
  46. Mróz Z., Piekarski J., 1998, Sensitivity analysis and optimal design of non-linear structures, Internationa Journal for Numumerical Methods in Engineering 42, 1231–1262.
  47. Park S., Kapania R.K., Kim S.J., 1999 Nonlinear transient response and second-order sensitivity using finite element method, AIAA Journal 37, 5, 613–622.
  48. Wójcicki Z., Chrobok R., 1998 The sensitivity analysis as a estimate criterion of shaker-foundation structure model, Inżynieria i Budownictwo 10, 567–570.
  49. Wójcicki Z., Grosel J., 1999 The stability and sensitivity analysis of structure supporting turbo-generator with regard to parametric effects, ZAMM 79, 2, 367–368.
  50. Wójcicki Z., Grosel J., 2000 The stability and sensitivity analysis of structure supporting turbo-generator with regard to parametric effects, ZAMM 80, 2, 311–312.
  51. Wójcicki Z., 1998, Sensitivity analysis of steady-stateresponse of parametric mass supporting bare structure, ZAMM 78, 2, 815–816.
  52. Wójcicki Z., 2000 Design sensitivity of transient vibration of two-mass system, Archives of Civil Engineering 46, 2, 345–355.
  53. Wójcicki Z., 2001 Transient process’ sensitivity fot turbo-generator supporting structure with regard to parametric excitation, ZAMM 81, 2, 237–238.
  54. Wójcicki Z., 2002 Sensitivity analysis as a method of absorber tuning for reduction of steady state response of linear parametric systems, Journal of Sound and Vibrations 253, 4, 755–772.
  55. Ruta P., Wójcicki Z., 2003 Analytical sensitivity method in problem of railroad vibration, Journal of Sound and Vibrations 266, 4, 1–13.
  56. Lu Y., Murthy V.R., 1992 AIAA Sensitivity analysis of discrete periodic systems with applications to helicopter rotor dynamics, Journal 30, 8, 1962–1969.
  57. Gu Y., Chen L., Wang W., 1999 Further research for sensitivity analyses of discrete periodic systems, AIAA Journal 37, 5, 653–656.
  58. Seyranian A.P., Solem F., Pedersen P., 2000 Multi-parameter linear periodic systems: sensitivity analysis and applications, Journal of Sound and Vibrations 229, 89–111.
  59. Hien T. D., Kleiber M., Stochastic design sensitivity in structural dynamics, International Journal for Numerical Methods in Engineering 32, 6, 1247–1265, 1991 https://doi.org/10.1002/nme.1620320606.
  60. Śniady P., Sieniawska R., Żukowski S., 1999 Sensitivity of a bar strustures reliability, Engineering Transations 48, 4, 405–414.
  61. Mazur-Śniady K., Śniady P., 2000 Design sensitivity of a beam with periodically variable geometry under harmonic excitation, ZAMM 80, 2, 395–396.
  62. Osiński J., 1985 Mechanika Teoretyczna i Stosowana 2, 23, Analysis of parametric vibrations of continuous systems subjected to constant lateral load using the asymptotic method and the finite element method (in Polish).
  63. Klasztorny M., Wójcicki Z., 1987 Steady-state vibrations and dynamic stability of discrete systems subjected to parametric and force excitation, Archiwum Inżynierii Lądowej 44, 4, 385–408 (in Polish).
  64. Schmidt G., Tondl A., 1986 Non-linear vibrations, Akademie-Verlag, Berlin.
  65. Osiński J., 1993 Parametric vibration of nonlinear systems. Nonlinear Vibration Problems 25, 336–349.
  66. Szabelski K., Warmiński J., 1995 Parametric self-excited non-linear system vibrations analysis with inertial excitation, Internationl Journal of Non-Linear Mechanics 30, 2, 179–189.
  67. Shiau L.-C., Wu T.-Y., 1996 E finite-element method for analysis of a non-linear system under stochastic parametric and external excitation, Internationl Journal of Non-Linear Mechanics 31, 2, 193–201.
  68. Esmailzadeh E., Nakhaie-Jazar G., 1997 Periodic solution of a Mathieu-Duffing type equation, Internationl Journal of Non-Linear Mechanics 32, 5, 905–912.
  69. Esmailzadeh E., Nakhaie-Jazar G., 1998 Periodic behavior of a cantilever beam with end mass subjected to harmonic base excitation, Internationl Journal of Non-Linear Mechanics 33, 4, 567–577.
  70. Sinha S.C., Butcher E.A., 1997 Symbolic computation of fundamental solution matrices for linear time-periodic dynamical systems, Journal of Sound and Vibrations 206, 1, 61–85.
  71. Deolasi P.J., Datta P.K., 1997 Simple and combination resonance of rectangular plates subjected to non-uniform edge loading with damping, Engineering Structures 19, 12, 1011–1017.
  72. Yu P., Huseyin K., 1998 Parametrically excited non-linear systems: a comparison of certain methods, Internationl Journal of Non-Linear Mechanics 33, 6, 967–978.
  73. Zhang Q-L., Peil U., 1999 Dynamic behaviours of cables in parametricall unstable zones, Computer and Structures 73, 437–443.
  74. Kamiński M.M., 2010 Structural sensitivity analysis in nonlinear and transient problems using the local response function technique, Structural and Multidisciplinary Optimization 43, 261–274, https://link.springer.com/article/10.1007/s00158-010-0565-z.
  75. Lee I.-W., Kim D.-O., Jung G.-H., 1999 Natural frequency and mode shape sensitivity of damped systems: Part I, Distinct natural frequencies, Journal of Sound and Vibrations 223, 3, 399–412.
  76. Lee I.-W., Kim D.-O., Jung G.-H., 1999 Natural frequency and mode shape sensitivity of damped systems: Part II, Multiple natural frequencies, Journal of Sound and Vibrations 223, 3, 413–424.
  77. Scarpa F., Curti G., 1999 A method for the parametric frequency sensitivity of interior acousto-structural coupled systems, Applied Acoustics 58, 451–467.
  78. Lallemand B., Level P., Duveau H., Mahieux B., 1999 Eigensolutions sensitivity analysis using a sub-structuring method, Computer and Structures 71, 257–265.
  79. Murthy V.R., Lin Y.-A., O’Hara S.W., 2000 Sensitivity derivatives of eigendata of one-dimensional structural systems, AIAA Journal 38, 1, 115–122.
  80. Dosch J.J., Inman D., Garcia E., 1992 A self-Sensing piezoelectric actuator for collocated control, Journal of Intelligent Material Systems and Structures 3, 166–185.
  81. Weiss K.D., Carlson J.D., Coulter J.P., 1993 Material aspects of electrorheological systems, Journal of Intelligent Material Systems and Structures 4, 13–34.
  82. Den Hartog J.P., 1956 Mechanical vibrations. New York: McGraw-Hill, (fourth edition).
  83. Gao H., Kwok K.S.C., Samali B., 1999 Characteristics of multiple tuned column dampers in suppresing structural vibration, Engineering Structures 21, 316–331.
  84. Holnicki-Szulc J., 1989 Active srategy of avoiding resonance, Rozprawy Inżynierskie 37, 4, 675–691.
  85. Mikhlin Yu.V., Zhupiev A.I., 1997 An application of the Ince algebraization to the stability of non-linear normal vibration models, Internationl Journal of Non-Linear Mechanics 32, 2, 393–409.
  86. Glabisz W., 1994 Application of Hamilton’s law to the stability analysis of a double pendulum under nonconservative loads, Computers and Structures 53, 1, 143–153.
  87. Glabisz W., 1996 Stability of simple discrete systems under nonconservative loading with dynamic follower parameter, Computers and Structures 60, 4, 653–663.
  88. Harris C.M., 1996 Shock and vibration handbook, New York: McGraw-Hill (fourth edition).
  89. Klasztorny M., 1995 Reduction of steady-state forced vibrations of structures with dynamic absorbers, Earthquake Engineering and Structural Dynamics 24, 1155–1172.
  90. Pakos W.M., Wójcicki Z., Grosel J., Majcher K.M., Sawicki W., 2016 Experimental research of cable tension tuning of a scaled model of cable stayed bridge, Archives of Civil and Mechanical Engineering, 16, 1, 41–52.
  91. Xu Y.L., 1996 Parametric study of active mass dampers for wind-excited tall buildings, Engineering Structures 18, 1, 64–76.
  92. Majcher K.P., Wójcicki Z., 2014 Kinematically excited parametric vibration of a tall building model with a TMD. Pt. 1, Numerical analyses., Archives of Civil and Mechanical Engineering, 14, 1, 204–217.
  93. Majcher K.P., Wójcicki Z., Grosel J., Sawicki W., 2014 Kinematically excited parametric vibration of a tall building model with a TMD. Pt. 2, Experimental analyses, Archives of Civil and Mechanical Engineering, 14, 1, 218–229.
  94. Yamaguchi H., Yashime M., Hirayama Y., 1997 Vibration reduction and isolation perfomance for om-off control of a friction force at a spring support, Journal of Sound and Vibrations 208, 5, 729–743.
  95. Wójcicki Z., 2025 Application of first-order sensitivity analysis to stabilization of unstable continuous parametric periodic systems, Studia Geotechica et Mechanica (in print).
  96. Wójcicki, Z., 2019 Eigenproblem sensitivity analysis of continuous parametric periodic systems, IOP Conf. Ser.: Mater. Sci. Eng., 661 012042 (XXVIII RSP Seminar, doi:10.1088/1757-899X/661/1/012042).
  97. Wójcicki, Z., 2020 First- and second-order sensitivity analysis of discontinuous parametric periodic systems, IOP Conf. Ser.: Mater. Sci. Eng. 1015 012001 (XXIX RSP Seminar, doi:10.1088/1757-899X/1015/1/012001).
  98. Wójcicki, Z. (2022). Method of Stabilization of Resonant Parametric Vibrations. In: Akimov, P., Vatin, N. (eds) XXX Russian-Polish-Slovak Seminar Theoretical Foundation of Civil Engineering (RSP 2021). Lecture Notes in Civil Engineering, vol 189. Springer, Cham. doi: 10.1007/978-3-030-86001-1_43.
  99. Wójcicki Z., Dynamic elimination of a parametric resonance vibration, University of Technology Press, Wroclaw, 2003 (in Polish).
  100. Fichtenholz G.M., Differential and Integral Calculus, WNT, Warszawa, 1978 (in Polish).
  101. Dziubiński I., Świątkowski T., Mathematical Guide, PWN, Warszawa, 1980 (in Polish).
  102. Wolfram S., The Mathematica Book, Wolfram Maedia/Cambridge University Press, New York, 1999 (fourth edition).
DOI: https://doi.org/10.2478/sgem-2025-0015 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 75 - 92
Submitted on: Jan 22, 2025
Accepted on: Apr 28, 2025
Published on: Sep 19, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Zbigniew Wójcicki, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.