References
- Lu, L., Liu, C., Qu, S., & Zhang, M. (2022). Experimental study on the mechanical and hydraulic behaviour of Fibre-Reinforced cemented soil with fly ash. Construction and Building Materials, 321, 126374.
- Porbaha, A., Shibuya, S., & Kishida, T. (2000). State of the art in deep mixing technology. Part III: geomaterial characterization. Proceedings of the Institution of Civil Engineers-Ground Improvement, 4(3), 91–110.
- Gregory, G. H., & Chill, D. S. (1998). Stabilization of earth slopes with fiber reinforcement. In Proc., 6th Int. Conf. on Geosynthetics (pp. 1073–1078). International Geosynthetics Society.
- Ziegler, S., Leshchinsky, D., Ling, H. I., & Perry, E. B. (1998). Effect of short polymeric fibers on crack development in clays. Soils and Foundations, 38(1), 247–253.
- Choubane, B., Robert, K., & Armaghani, J. (2001). Full-scale laboratory evaluation of polypropylene fiber reinforcement of subgrade soils. Transportation Research Record (TRB), 01–2157.
- Webster, S. L., & Santoni, R. L. (1997). Contingency airfield and road construction using geosynthetic fiber stabilization of sands (Vol. 97, No. 4). US Army Engineer Waterways Experiment Station.
- Tingle, J.S., Webster, S.L., & Santoni, R.L. (1999). Discrete Fiber Reinforcement of Sands for Expedient Road Construction. (1999). Discrete fiber reinforcement of sands for expedient road construction. Published 1 March 1999. Engineering, Environmental Science. DOI:10.21236/ADA362057
- Tang, C., Shi, B., Gao, W., Chen, F., & Cai, Y. (2007). Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes, 25(3), 194–202.
- Ahmad, F., Bateni, F., & Azmi, M. (2010). Performance evaluation of silty sand reinforced with fibres. Geotextiles and geomembranes, 28(1), 93–99.
- Zaimoglu, A.S., Yetimoglu, T. (2012). Strength Behavior of Fine Grained Soil Reinforced with Randomly Distributed Polypropylene Fibers. Geotech Geol Eng 30, 197–203 (2012).
https://doi.org/10.1007/s10706-011-9462-5 - Gray, D. H., & Ohashi, H. (1983). Mechanics of fiber reinforcement in sand. Journal of geotechnical engineering, 109(3), 335–353.
- Murray, J. J., Frost, J. D., & Wang, Y. (2000). Behavior of a sandy silt reinforced with discontinuous recycled fiber inclusions. Transportation research record, 1714(1), 9–17.
- Consoli, N. C., Rotta G. V., and Prietto. P. D. M. (2002). Influence Of Curing Under Stress On The Triaxial Response of Cemented Soils. Geotechnique 52(5): 382–384.
- Zornberg, J. G. (2002). Discrete framework for limit equilibrium analysis of fibre-reinforced soil. Géotechnique, 52(8), 593–604.
- Michalowski, R. L., &Čermák, J. (2003). Triaxial compression of sand reinforced with fibers. Journal of geotechnical and geoenvironmental engineering, 129(2), 125–136.
- Sun, Q., Zhang, J. & Zhou, N. (2018). Early-Age Strength of Aeolian Sand-Based Cemented Backfilling Materials: Experimental Results. Arabian Journal for Sciences Engineering 43, 1697–1708 (2018).
https://doi.org/10.1007/s13369-017-2654-4 - Gul, N., & Mir, B. A. (2023). Performance evaluation of silty soil reinforced with glass fiber and cement kiln dust for subgrade applications. Construction and Building Materials, 392, 131943.
- Shen, Y. S., Tang, Y., Yin, J., Li, M. P., & Wen, T. (2021). An experimental investigation on strength characteristics of fiber-reinforced clayey soil treated with lime or cement. Construction and Building Materials, 294, 123537.
- Arab A. (2009) Monotonic and cyclic behaviour of silty sand, C. R. Mecanique 337 (2009) 621–631
- Arab A., Sadek M., Belkhatir M., Shahrour I. (2014). “Monotonic preloading Effect on the Liquefaction Resistance of Silty Sand: a Laboratory Study”. Arabian Journal for Sciences Engineering. 2014. 39:685–694. DOI 10.1007/s13369-013-0700-4
- DjaferHenni A, Arab A, Belkhatir M, Hamoudi SA, Khelafi H (2013) Undrained behavior of silty sand: effect of the overconsolidation ratio. Arab J Geosci. doi:10.1007/s12517-011-0365-9
- Benessalah, I., Sadek, M., Villard, P., and Arab, A. (2022). Undrained triaxial compression tests on three-dimensional reinforced sand: effect of the geocell height. European Journal of Environmental and Civil Engineering, 26(5), 1694–1705.
- Benessalah, I., Arab, A., & Meziane, E. H. (2021). Intergranular void ratio and undrained monotonic behavior of Chlef sand containing low plastic fines. Acta Mechanica, 232(4), 1621–1640.
- Meziane, E. H., Benessalah, I. & Arab A. (2022). An insight into the liquefaction resistance of sand using cyclic undrained triaxial tests: Effect of the relative density and the loading amplitude. Acta Geotechnica Slovenica 18(2). 44–55.
https://doi.org/10.18690/actageotechslov.18.2.44-55.2022 - Boutouba, K., Benessalah, I., Arab, A., & Henni, A. D. (2019). Shear strength enhancement of cemented reinforced sand: role of cement content on the macro-mechanical behavior. Studia Geotechnica et Mechanica, 41(4), 200–211.
- Merabet, K., Benessalah, I., Chemmam, M., & Arab, A. (2020). Laboratory study of shear strength response of Chlef natural sand: Effect of saturation. Marine Georesources & Geotechnology, 38(4), 461–467.
- Della, N., Belkhatir, M., Arab, A., Canou, J., & Dupla, J. C. (2015). Undrained monotonic response and instability of medium-dense sandy soil. Marine Georesources & Geotechnology, 33(6), 487–495.
- Aouali, N., Benessalah, I., Arab, A., Ali, B., & Abed, M. (2019). Shear strength response of fibre reinforced Chlef (Algeria) silty sand: laboratory study. Geotechnical and Geological Engineering, 37(2), 1047–1057.
- Bouaricha, L., Henni, A. D., & Lancelot, L. (2017). A laboratory investigation on shear strength behavior of sandy soil: effect of glass fiber and clinker residue content. Studia Geotechnica et Mechanica, 39(4), 3–15.
- ASTM D3080. : Standard test method for direct shear test of soils under consolidated drained conditions, American Society for Testing and Materials, West Conshohocken, (2005).
- Nougar, B., Brahimi, A., Bouri, D. E., Arab, A., Benessalah I. (2019). Laboratory investigation into the effect of fines plasticity on the mechanical behavior of sand/fines mixtures. Transportation Infrastructure Geotechnology 8(3).438–451.
- Benessalah, I., Arab, A., Villard, P., Sadek, M., & Kadri, A. (2016). Laboratory study on shear strength behaviour of reinforced sandy soil: effect of glass-fibre content and other parameters. Arabian Journal for Science and Engineering, 41, 1343–1353.
- Ateş, A. (2016). Mechanical properties of sandy soils reinforced with cement and randomly distributed glass fibers (GRC). Composites Part B: Engineering, 96, 295–304.
- Sadek, S., Najjar, S., & Abboud, A. (2013). Compressive strength of fiber-reinforced lightly-cement stabilized sand. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris.
- Malidarreh, N. R., Shooshpasha, I., Mirhosseini, S. M., & Dehestani, M. (2018). Effects of reinforcement on mechanical behaviour of cement treated sand using direct shear and triaxial tests. International Journal of Geotechnical Engineering, 12(5), 491–499.
- Al-Refeai, T. O. (1991). Behavior of granular soils reinforced with discrete randomly oriented inclusions. Geotextiles and Geomembranes, 10(4), 319–333.
- Michalowski, R. L., & Zhao, A. (1996). Failure of fiber-reinforced granular soils. Journal of geotechnical engineering, 122(3), 226–234.
- Di Prisco, C., & Nova, R. (1993). A constitutive model for soil reinforced by continuous threads. Geotextiles and Geomembranes, 12(2), 161–178.
- Wu, T. H., Beal, P. E., & Lan, C. (1988). In-situ shear test of soil-root systems. Journal of Geotechnical Engineering, 114(12), 1376–1394.
- Vaid, P.Y., Sivathayalan, S., Stedman, D.: Influence of specimen reconstituting method on the undrained response of sand. Geotech. Test. J. 22, 187–195 (1999)
- Kuerbis, R., Vaid, Y.P.: Sand sample preparation—the slurry deposition method. Soils Found 28, 107–118 (1988)
- Della, N., Belkhatir, M., Arab, A., Canou, J., & Dupla, J. C. (2014). Effect of fabric method on instability behavior of granular material. Acta Mechanica, 225(7), 2043–2057.