Have a personal or library account? Click to login

DEM modelling of the activation and reactivation of capable faults in a typical Apulian rock succession: the viewpoint of local seismic effect during the 1948 Earthquake (Apulia, Italy)

Open Access
|Feb 2025

References

  1. Abe, S., Gent, H.V., Urai J.L. (2011): DEM simulation of normal faults in cohesive materials. Tectonophysics 512: 12–21.
  2. Ambraseys, N.N., Smit, P., Sigbjornsson, R., Suhadolc, P. and Margaris, B. (2002): Internet-Site for European Strong-Motion Data. European Commission, Research-Directorate General, Environment and Climate Programme.
  3. Ambraseys, N.N., Douglas, J., Rinaldis, D., Berge-Thierry, C., Suhadolc, P., Costa, G., Sigbjornsson, R., Smit, P. (2004): Dissemination of European strong-motion data. Vol. 2, CD-ROM Collection, Engineering and Physical Sciences Research Council, UK.
  4. Anastasopoulos, I., Gazetas, G., Bransby, M.F., Davies, M.C.R., Nahas, E.I. (2007): Fault rupture propagation through sand: finite-element analysis and validation through centrifuge experiments. J. Geotech. Geoenviron. Eng. 133 (8): 943–958.
  5. Baldassarre, G. (1990): Zonazione geologico tecnica della città di Matera. Geol. Appl. e Idrog. vol. XXV: 181–194.
  6. Barbero, M., Barla, G., Demarie, G.V. (2004): Applicazione del Metodo degli Elementi Distinti alla dinamica di mezzi discontinui. Rivista Italiana di Geotecnica 3.
  7. Barla, G., Monacis, G., Perino, A., Hatzor, Y.H. (2010): Distinct Element Modelling in Static and Dynamic Conditions with Application to an Underground Archaeological Site. Rock Mechanics and Rock Engineering 43 (6): 877–890.
  8. Bense, V.F., Gleeson, T., Loveless, S.E., Bour, O., Scibek, J. (2013): Fault zone hydrogeology. Earth-Science Reviews 127: 171–192.
  9. Billi, A. (2005): Attributes and influence on fluid flow of fractures in foreland carbonates of southern Italy. J. Struct. Geol. 27: 1630–1643.
  10. Billi, A., Salvini, F., Storti, F. (2003): The damage zone-fault core transition in carbonate rocks: Implications for fault growth, structure and permeability. J. Struct. Geol. 25: 1779–1794.
  11. Bransby, M.F., Davies, M.C.R., EL Nahas, A. (2008a): Centrifuge modeling of normal fault-foundation interaction. Bull. Earthq. Eng. 6 (4): 585–605.
  12. Bray, J.D., Seed, R.B., Cluff, L.S., Seed, H.B. (1994a): Earthquake fault rupture propagation through soil. J. Geotech. Eng. 120 (3): 543–561.
  13. Bray, J.D., Seed, R.B., Seed, H.B. (1994b): Analysis of earthquake fault rupture propagation through cohesive soil. J. Geotech. Eng. 120 (3): 562–580.
  14. Bruno, G. (2012): Caratterizzazione geomeccanica per la progettazione ingegneristica. Flaccovio Dario (ed.), Palermo, ISBN 978-88-579-0150-3.
  15. Bruno, G., Cherubini, C. (2005): Subsidence Induced by the Instability of Weak Rock Underground Quarries in Apulia. Giornale di Geologia Applicata 1: 33–39. https://doi.org/10.1474/GGA.2005-01.0-04.0004.
  16. Bruno, G., Tupputi, D., Cristallo, F. (2016): Ricostruzione con metodi geofisici del modello ipogei-struttura della chiesa di San Domenico (Matera) finalizzato a valutazioni di stabilità. Geologia dell’Ambiente, Supplemento al n. 3/2016, ISSN 1591–5352.
  17. Bruno. G., Rotolo, M. (2018): Analisi di stabilità di un frantoio ipogeo ubicato sul fianco di un versante in roccia calcarenitica in agro di Monopoli. Geologi e Territorio 2: 3–8, ISSN 1974-1189.
  18. Bruno, G. and Carucci, F. (2020): 2D numerical analysis of the seismic response of a karst rock mass: importance of underground caves and geostructural details. Studia Geotechnica et Mechanica, vol. 42, no. 1, 2020, 61–73. https://doi.org/10.2478/sgem-2019-0028.
  19. Bruno, G., Tupputi, D., Simeone, V. (2023): Geomechanical modelling and stability analysis of the shallow underground water reservoir ‘Palombaro Lungo’ (Matera Italy). Environmental Earth Sciences, (2023) 82:302. https://doi.org/10.1007/s12665-023-11001-2.
  20. Chang, Y.Y., Lee, C.J., Huang, W.C., Hung, W.Y, Huang, W.J., Lin, M.L., Chen, Y.H. (2015): Evolution of the surface deformation profile and subsurface distortion zone during reverse faulting through overburden sand. Engineering Geology 184 (2015): 52–70.
  21. Chen, C.C., Huang, C.T., Cherng, R.H., Jeng, V. (2000): Preliminary investigation of damage to near fault buildings of the 1999 Chi-Chi earthquake. Earthq. Eng. Eng. Seismol. 2 (1), 7: 9–92.
  22. Chen, W.S., Yang, C.C., Yen, I.C., Lee, L.S., Lee, K.J., Yang, H.C., Ota, Y., Lin, C.W., Lin, W.H., Shih, T.S., Lu, S.T. (2007): Late Holocene paleoseismicity of the southern part of the Chelungpu Fault in Central Taiwan: evidence from the Chushan excavation site. Bull. Seismol. Soc. Am. 97 (1B): 1–13.
  23. Cherubini, C., Reina, A., Bruno, D. (2007): Le rocce tenere del Salento: proposta di classificazione con l’uso delle caratteristiche tecniche e meccaniche. Geologi e Territorio 2: 37–47, ISSN 1974-1189.
  24. Chilovi, C., De Feyter, A.J. e Pompucci, A. (2000): Wrench zone reactivation in the Adriatic Block: the example of the Mattinata Fault System (SE Italy). Boll. Soc. Geol. It., 119: 3–8.
  25. Commissione tecnica per la microzonazione sismica (2015): Linee guida per la gestione del territorio in aree interessate da Faglie Attive e Capaci (FAC), versione 1.0. Conferenza delle Regioni e delle Province Autonome - Dipartimento della protezione civile, Roma.
  26. Cotecchia, V., Grassi, D. (1975): Stato di conservazione dei “sassi” di Matera (Basilicata) in rapporto alle condizioni geomorfologiche e geomeccaniche del territorio e alle azioni antropiche. Geol. Appl. ed Idrog. vol. X: 55–105.
  27. De Santis, V., Caldara, M. & Pennetta, L. (2013): The marine and alluvial terraces of Tavoliere di Puglia plain (southern Italy). Journal of Maps, DOI: 10.1080/17445647.2013.861366
  28. DISS Working Group (2021): Database of Individual Seismogenic Sources (DISS), version 3.3. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://diss.ingv.it/diss330/dissmap.html. Accessed 01 June 2023.
  29. Dong, J.J., Wang, C.D., Lee, C.T., Liao, J.J., Pan, Y.W. (2003): The influence of surface ruptures on building damage in the 1999 Chi-Chi earthquake: a case study in Fengyuan City. Engineering Geology 71, Issues 1–2, January 2004: 157–179.
  30. Faulkner, D.R., Jackson, C.A.L., Lunn, R.J., Schlische, R.W., Shipton, Z.K., Wibberley, C.A.J., Withjack, M.O. (2010): A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology 32: 1557–1575.
  31. Geological Society of London, Engineering Group Working Party (1970) Report on the logging of rock cores for engineering purposes. Q. J. Eng. Geol. 3: 1–24.
  32. Ghosh, A., Hsiungm S. (2011): Effects of tilted and faulted strata on seismic ground motion. U.S. Nuclear Regulatory Commission Contract NRC-02-07-006, Center for Nuclear Waste Regulatory Analyses, San Antonio, Texas.
  33. Guidoboni, E., Ferrari, G., Mariotti, D., Comastri, A., Tarabusi, G., Sgattoni, G., Valensise, G. (2018): CFTI5Med, Catalogo dei Forti Terremoti in Italia (461 a.C.-1997) e nell’area Mediterranea (760 a.C.-1500). Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.6092/ingv.it-cfti5.
  34. Guidoboni, E., Ferrari, G., Tarabusi, G., Sgattoni, G., Comastri, A., Mariotti, D., Ciuccarelli, C., Bianchi, M.G., Valensise, G. (2019): CFTI5Med, the new release of the catalogue of strong earthquakes in Italy and in the Mediterranean area. Scientific Data 6, Article number: 80 (2019). https://doi.org/10.1038/s41597-019-0091-9. Accessed 01 June 2023.
  35. Hanks, T.C., Kanamori, H. (1979): A moment-magnitude scale. J. Geophys. Res. 84: 2348–2350.
  36. IAEA SSG-9 (2010) Seismic Hazard in Site Evaluation for Nuclear Installations. Specific Safety Guide. IAEA Safety Standards. Series. https://www-pub.iaea.org/MTCD/publications/PDF/Pub1448_web.pdf. Accessed 01 June 2023.
  37. IAEA TECDOC 1767 (2015) The Contribution of Palaeoseismology to Seismic Hazard Assessment in Site Evaluation for Nuclear Installations. https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1767_web.pdf. Accessed 01 June 2023.
  38. Iervolino, I., Galasso, C., Cosenza, E. (2010): REXEL: computer aided record selection for code-based seismic structural analysis. in Bulletin of Earthquake Engineering, n.8: 339–362.
  39. ISIDe Working Group (2007): Italian Seismological Instrumental and Parametric Database (ISIDe). Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/ISIDE. Accessed 01 June 2023.
  40. ITHACA Working Group (2019): ITHACA (ITaly HAzard from CApable faulting), A database of active capable faults of the Italian territory. https://sgi.isprambiente.it/ithaca/viewer/index.html. Accessed 01 June 2023.
  41. Itasca (2019): Universal Distinct Element Code: User’s Guide. Itasca Consulting Group, Inc. Minneapolis, Minnesota 55401 USA.
  42. Korneva, I., Tondi, E., Agosta, F., Rustichelli, A., Spina, V., Bitonte, R., Di Cuia, R. (2014): Structural properties of fractured and faulted Cretaceous platform carbonates, Murge Plateau (southern Italy). Marine and Petroleum Geology 57: 312–326.
  43. Lin, M.L., Lu, C.Y., Chang, K.J., Jeng, F.F., Lee, C.J. (2005): Sandbox experiments of plate convergence-scale effect and associated mechanism. Terr. Atmos. Ocean., Sci. 16 (3): 595–620.
  44. Lin, M-L., Chung, C-F., Jeng, F-S. (2006): Deformation of overburden soil induced by thrust fault slip. Engineering Geology 88 (1–2): 70–89.
  45. Loukidis, D., Bouckovalas, G. (2001): Numerical simulation of active fault rupture propagation through dry soil. In: Proceedings of the fourth international conference on recent advances in geotechnical earthquake engineering and soil dynamic, Prakash S. Editor, San Diego, California, CD-ROM, paper no. 3.04.
  46. Loukidis, D., Bouckovalas, G.D., Papadimitriou, A.G. (2009): Analysis of fault rupture propagation through uniform soil cover. Soil Dynamics and Earthquake Engineering 29: 1389–1404.
  47. Micarelli, L., Moretti, I., Jaubert, M., Moulouel, H. (2006): Fracture analysis in the south-western Corinth rift (Greece) and implications on fault hydraulic behavior. Tectonophysics 426: 31–59.
  48. Ministry for the Environment, New Zealand (2003): Planning for the development of land on or close to active faults. A guideline to assist resource management planners in New Zealand, ISBN: 0-478-18901 ME number: 483.
  49. Mortazavi Zanjani, M., Soroush, A. (2013): Numerical modeling of reverse fault rupture propagation through clayey embankment. Int. J. Civ. Eng. 11 (2): 122–132.
  50. Ng, C.W.W., Cai, Q.P., Hu, P. (2012): Centrifuge and numerical modeling of normal fault rupture propagation in clay with and without a preexisting fracture. J. Geotech. Geoenviron. Eng. ASCE, 138 (12): 1492–1502.
  51. Nollet, S., Kleine Vennekate, G.J., Giesew, S., Vrolijk, P., Urai, J.L., Ziegler, M. (2012): Localization patterns in sandbox-scale numerical experiments above a normal fault in basement. J. Struct. Geol. 39: 199–209.
  52. NTC18 Norme Tecniche per le Costruzioni (2018): Ministero Infrastrutture e Trasporti, DM 17 Gennaio 2018, Gazzetta Ufficiale della Repubblica Italiana 42, 2018.
  53. Papadimitriou, A., Loukidis, D., Bouckovalas, G., Karamitros, D. (2007): Zone of excessive ground surface distortion due to dip-slip fault rupture. 4th International Conference on Earthquake Geotechnical Engineering, June 25–28, 2007, Paper No. 1583.
  54. Pyrak-Nolte, L.J., Myer, L.R., Cook Neville, G.W. (1990): Transmission of Seismic Waves Across Single Natural Fractures. Journal of Geophysical Research, vol. 95, n° B6, June 10: 8617–8638.
  55. Ranieri, L. (1949): Sul periodo sismico dell’estate 1948 in Puglia. Bollettino della Società Geografica Italiana, a. 83, vol.86: 273–219, Roma.
  56. Rodriguez-Castellanos, A., Sánchez-Sesma, F.J., Luzón, F. and Martin, R. (2006): Multiple scattering of elastic waves by subsurface fractures and cavities. in Bulletin of the Seismological Society of America, vol. 96, n. 4A: 1359–1374.
  57. Roth, W.H., Kalsi, G., Papastamatiou, D., Cundall, P.A. (1982): Numerical modelling of fault propagation in soils. In: Proceedings of the fourth international conference on numerical methods in geomechanics, Edmonton, Canada, pp. 487–494.
  58. Servizio Geologico d’Italia (2011): Note Illustrative della Carta Geologica d’Italia alla scala 1:50000 Foglio 396 San Severo. Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Roma.
  59. Simeone, V., Doglioni, A., Lacertosa, R.M., Sdao, F. (2019): Environmental and Geological Characters and Stability Problems in the Historic Centre of Matera (South Italy). In: Shakoor A and Cato K (eds.) IAEG/AEG Annual Meeting Proceedings, ISBN 978-3-319-93127-2 (eBook); San Francisco, California, 2018, Volume 2, pp. 161–168. https://doi.org/10.1007/978-3-319-93127-2_23.
  60. Spalluto, L. (2004): La Piattaforma Apula nel Gargano centro-occidentale: organizzazione stratigrafica ed assetto della successione mesozoica di piattaforma interna. Tesi di dottorato in Scienze della Terra, Università degli Studi di Bari, 173 pp.
  61. Spalluto, L. and Moretti, M. (2006): Evidenze di neotettonica (Pliocene medio-Pleistocene superiore) nel settore occidentale del promontorio del Gargano (Italia meridionale). Il Quaternario, Italian Journal of Quaternary Sciences 19 (1): 143–154.
  62. Taniyama, H. (2011): Numerical analysis of overburden soil subjected to strike-slip fault: distinct element analysis of Nojima fault. Eng. Geol. 123 (3): 194–303.
  63. Vitale, S., Amore, O.F., Ciarcia, S., Fedele, L., Grifa, C., Prinzi, E.P., Tavani, S., Assisi Tamparulo, F. (2017): Structural, petrographic, and petrological clues for a Cretaceous-Paleogene abortive rift in the southern Adria domain (southern Apennines, Italy). Geol. J.. https://doi.org/10.1002/gj.2919.
  64. Well, D.L. and Coppersmith, K.J. (1994): New Empirical Relationships among Magnitude, Rupture length, rupture width, rupture area and surface displacement. Bulletin of the Seismological Society of America, vol. 84, No. 4: 914–1002.
  65. Wesnousky, S.G. (2008): Displacement and geometrical characteristics of earthquake surface ruptures, Bull. Seismol. Soc. Am. 98: 1609–1632.
DOI: https://doi.org/10.2478/sgem-2025-0001 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 1 - 16
Submitted on: Oct 10, 2023
Accepted on: Dec 16, 2024
Published on: Feb 14, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Bruno Giovanni, Guerra Laura, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.